

PATHspider 2.0

In today’s Internet we see an increasing deployment of middleboxes. While
middleboxes provide in-network functionality that is necessary to keep networks
manageable and economically viable, any packet mangling — whether essential for
the needed functionality or accidental as an unwanted side effect — makes it
more and more difficult to deploy new protocols or extensions of existing
protocols.

For the evolution of the protocol stack, it is important to know which network
impairments exist and potentially need to be worked around. While classical
network measurement tools are often focused on absolute performance values,
PATHspider performs A/B testing between two different protocols or different
protocol extensions to perform controlled experiments of protocol-dependent
connectivity problems as well as differential treatment.

PATHspider is a framework for performing and analyzing these measurements,
while the actual A/B tests can be easily customized. This documentation
describes the architecture of PATHspider, the plugins available and how to use
and develop and package the plugins.

Table of Contents

	Introduction
	Architecture

	Extensibility

	Installation
	Debian GNU/Linux

	Vagrant

	Source

	Command Line Usage Overview
	Performing Active Measurement

	Performing Passive Observation

	Data Formats

	Active Measurement Plugins
	DSCP Plugin

	ECN Plugin

	Evil Bit Plugin

	H2 Plugin

	TCP Maximum Segment Size Plugin

	UDP Zero Checksum Plugin

	3rd-Party Plugins

	Passive Observation
	Basic Chain

	DNS Chain

	DSCP Chain

	ECN Chain

	Evil Bit Chain

	ICMP Chain

	TCP Maximum Segment Size Chain

	TCP Chain

	TCP Fast Open Chain

	UDP Chain

	Resolving Target Lists
	Built-in DNS Resolver

	Advanced DNS Resolver

	Developing Plugins
	Choosing a Plugin Model

	Plugin Basics

	Common Plugin Features

	SynchronizedSpider Development

	DesynchronizedSpider Development

	SingleSpider Development

	ForgeSpider Development

	Flow Analysis Chains

	PATHspider Internals
	Abstract Spider

	Desynchronized Spider

	Forge Spider

	Observer

	Synchronized Spider

Citing PATHspider

When presenting work that uses PATHspider, we would appreciate it if you could
cite PATHspider as:

Learmonth, I.R., Trammell, B., Kuhlewind, M. and Fairhurst, G., 2016, July.
PATHspider: A tool for active measurement of path transparency [https://mami-project.eu/wp-content/uploads/2015/10/anrw16-final13.pdf].
In Proceedings of the 2016 Applied Networking Research Workshop (pp. 62-64).
ACM.

Acknowledgements

Current development of PATHspider is supported by the European Union’s Horizon
2020 project MAMI. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 688421.
The opinions expressed and arguments employed reflect only the authors’ view.
The European Commission is not responsible for any use that may be made of that
information.

Introduction

Network operators increasingly rely on in-network functionality to make their
networks manageable and economically viable. These middleboxes make the
end-to-end path for traffic more opaque by making assumptions about the traffic
passing through them. This has led to an ossification of the Internet protocol
stack: new protocols and extensions can be difficult to deploy when middleboxes
do not understand them [Honda11]. PATHspider is a software measurement tool
for active measurement of Internet path transparency to transport protocols and
transport protocol extensions, that can generate raw data at scale to determine
the size and shape of this problem.

The A/B testing measurement methodology used by PATHspider is simple: We
perform connections from a set of observation points to a set of measurement
targets using two configurations. A baseline configuration (A), usually a TCP
connection using kernel default and no extensions, tests basic connectivity.
These connections are compared to the experimental configuration (B), which
uses a different transport protocol or set of TCP extensions. These connections
are made as simultaneously as possible, to reduce the impact of transient
network changes.

Since PATHspider 2.0, it is also possible to perform more than one B test
optionally performing an A test between each B test in order to revalidate the
path. This can also be used to “prime” the path for a follow up connection if
it is desirable to have devices on the path hold state before performing the
test.

PATHspider is a generalized version of the
ecnspider [https://github.com/britram/pathtools/tree/master/pathspider/ecnspider2]
tool, used in previous studies to probe the paths from multiple vantage points
to web-servers [Trammell15] and to peer-to-peer clients [Gubser15] for
failures negotiating Explicit Congestion Notification (ECN) [RFC3168] in
TCP.

As a generalized tool for controlled experimental A/B testing of path
impairment, PATHspider fills a gap in the existing Internet active measurement
software ecosystem. Existing active measurement platforms, such as RIPE Atlas
[RIPEAtlas], OONI [Filasto12], or Netalyzr [Kreibich10], measure absolute
performance and connectivity between a pair of endpoints under certain
conditions. The results obtainable from each of these can be compared to each
other to simulate A/B testing. However, the measurement data from these
platforms provide a less controlled view than can be achieved with PATHspider,
given coarser scheduling of measurements in each state.

Given PATHspider’s modular design and implementation in Python, plugins to
perform measurements for any transport protocol or extension are easy to
build and can take advantage of the rich Python library ecosystem, including
high-level application libraries, low-level socket interfaces, and packet
forging tools such as Scapy [http://www.secdev.org/projects/scapy/].

Architecture

The PATHspider architecture has four components, illustrated in
the diagram below the configurator, the workers, the observer and the combiner. Each component is implemented as one or more
threads, launched when PATHspider starts.

[image: Overview of PATHspider architecture]
An overview of the PATHspider architecture

For each target hostname and/or address, with port numbers where appropriate,
PATHspider enqueues a job, to be distributed amongst the worker threads when
available. Each worker performs one connection with the “A” configuration
and one connection with the “B” configuration. The “A” configuration will
always be connected first and serves as the base line measurement, followed by
the “B” configuration. This allows detection of hosts that do not respond
rather than failing as a result of using a particular transport protocol or
extension. These sockets remain open for a post-connection operation.

Some transport options require a system-wide parameter change, for example
enabling ECN in the Linux kernel. This requires locking and synchronisation.
Using semaphores, the configurator waits for each worker to complete an
operation and then changes the state to perform the next batch of operations.
This process cycles continually until no more jobs remain.

In a typical experiment, multiple workers (on the order of hundreds) are
active, since much of the time in a connection test is spent waiting for an
answer from the target or a timeout to fire. Where it is possible to peform the
tests without a system-wide configuration it is possible to disable the
semaphores to increase the speed of the test.

In addition, packets are separately captured for analysis by the observer using
Python bindings for libtrace [https://www.cs.auckland.ac.nz/~nevil/python-libtrace/]. First, the observer
assigns each incoming packet to a flow based on the source and destination
addresses, as well as the TCP, UDP or SCTP ports when available. The packet and
its associated flow are then passed to a function chain. The functions in this
chain may be simple functions, such as counting the number of packets or octets
seen for a flow, or more complex functions, such as recording the state of
flags within packets and analysis based on previously observed packets in the
flow. For example, a function may record both an ECN negotiation attempt and
whether the host successfully negotiated use of ECN.

Path conditions are generated for the path to each target to determine whether
or not connectivity breakage has occured, or other conditions that may lead to
more subtle breakage.

Extensibility

PATHspider plugins are built by extending an abstract class that
implements the core behaviour, with functions for the
configurator, workers, observer, and merger. There are three main abstract
classes that can be extended by plugins:
pathspider.sync.SynchronizedSpider,
pathspider.desync.DesynchronizedSpider and
pathspider.forge.ForgeSpider.

Depending on the type of plugin being created, these abstract classes are
extended to include logic for generating the active measurement traffic.

Plugins can implement arbitrary functions for the observer function chain, or
reuse library functions for some functionality. These track the state of flows
and build flow records for different packet classes: The first chain handles
setup on the first packet of a new flow. Separate chains for IP, TCP
and UDP packets allow different behaviours based on the IP version and
transport protocol.

The final plugin function is the combiner function. This takes
a list of merged job records and flow records to produce “path conditions”
before passing the final job record back to PATHspider for output.

Installation

Debian GNU/Linux

Note

If there has not been much time since the release, the Debian
packages for the latest version may not yet be available.

PATHspider is packaged for Debian and packages are made available for the
testing and stable-backports distributions. If you are running Debian stable,
ensure that you have enabled the stable-backports repository [https://backports.debian.org/Instructions/] in your apt sources.

To install PATHspider, simply run:

sudo apt install pathspider

Vagrant

Warning

Depending on the set up of your Vagrant virtualization provider,
some tests may be affected. It is wise to test against known
configurations to ensure that your networking set up has a clear
path to the Internet before running larger measurement campaigns.

On systems other than Linux systems, you may use Vagrant [https://www.vagrantup.com/] to run PATHspider. This may also be useful
during development. A Vagrantfile is provided that will create a Debian-based
virtual machine with all the PATHspider dependencies installed.

In the virtual machine, the PATHspider code will be copied to
/home/vagrant/pathspider. To improve compatibility across platforms, this
is not synchronized with the repository outside of the Vagrant image. Expert
users may edit the Vagrantfile to achieve this. PATHspider is installed in
development mode, meaning that this is also the location of the PATHspider code
that will be run when running the /usr/bin/pspdr command inside the virtual
machine.

Assuming that you have Vagrant and a virtualisation provider (e.g. VirtualBox)
installed, you can get started with:

vagrant up
vagrant ssh

Depending on the speed of your Internet connection, this may take a long time.

Source

Warning

PATHspider 2.0 depends on pycurl >= 7.43.0.1, released on the 7th
December 2017. If you have errors when running PATHspider similar
to AttributeError: module 'pycurl' has no attribute
'CONNECT_TO' then it is most likely the case that your version
of pycurl is too old.

If you are working from the source distribution (e.g. cloned git repository)
then you will need to install the required dependencies. On Debian GNU/Linux,
assuming you have the stable-backports repository enabled if you are running
stable:

sudo apt build-dep pathspider

Note

This will install both the runtime and the build dependencies required
for PATHspider, its testsuite and its documentation.

On other platforms, you may install most of the dependencies required via pip:

pip install -r requirements.txt

Unfortunately, python-libtrace [https://github.com/nevil-brownlee/python-libtrace] is not available on PyPI
and so must be installed seperately. You will also need to ensure that for both
pycurl and python-libtrace you have the build dependencies available as these
are compiled CPython modules.

If you wish to build the documentation from source or to use the testsuite, and
you are installing your dependencies via pip, you will also need the following
dependencies:

pip install -r requirements_dev.txt

With the dependencies installed, you can install PATHspider with:

python3 setup.py install

Command Line Usage Overview

You can run PATHspider from the command line. In order for the Observer to
work, you will need permissions to capture raw packets from the network
interface. You may also need elevated privileges when generating traffic using
raw sockets or to modify the local TCP/IP stack. This will require you to use
sudo or equivalent in order to run PATHspider if you are not logged in as
the root user.

pspdr --help
usage: pspdr [-h] [--verbose] COMMAND ...

PATHspider will spider the paths.

optional arguments:
 -h, --help show this help message and exit
 --verbose Enable verbose logging

Commands:
 filter Pre-process a target list
 measure Perform a PATHspider measurement
 observe Passively observe network traffic
 test Run the built in test suite

Spider safely!

Performing Active Measurement

PATHspider provides the “measure” command to perform active traffic generation
and observation of that traffic for path transparency measurement. Based on
the observations made, paths are assigned conditions such as
ecn.connectivity.works indicating that the use of ECN does not cause
connectivity impairment between the vantage point and the particular target.

It is possible to enable the output of flow records along with the derived
observations using the --output-flows flag. This will generate considerably
more output and so is disabled by default.

You may specify input and output files using flags, however by default these
are set to be stdin and stdout and so you can, and are recommended to, use
shell redirection instead. To see output as it is written to the file, you can
pipe the output to tee to print it on the screen while also saving it to
a file.

You will be required to set your interface name and PATHspider will not start
if it detects that the chosen interface is not active.

pspdr measure --help
usage: pspdr measure [-h] [-i INTERFACE] [-w WORKERS] [--input INPUTFILE]
 [--output OUTPUTFILE] [--output-flows]
 PLUGIN ...

optional arguments:
 -h, --help show this help message and exit
 -i INTERFACE, --interface INTERFACE
 The interface to use for the observer. (Default: eth0)
 -w WORKERS, --workers WORKERS
 Number of workers to use. (Default: 100)
 --input INPUTFILE A file containing a list of PATHspider jobs. Defaults
 to standard input.
 --output OUTPUTFILE The file to output results data to. Defaults to
 standard output.
 --output-flows Include flow results in output.

Plugins:
 The following plugins are available for use:

 tfo TCP Fast Open
 ecn Explicit Congestion Notification
 h2 HTTP/2
 dscp Differentiated Services Codepoints
 dnsresolv Simple Input List DNS Resolver
 udpopts UDP Options Trailer
 udpzero UDP Zero Checksum

Spider safely!

Quickstart Example

You can run a small study using the ECN plugin and the included
webtest.ndjson file to measure path transparency to ECN for a small selection
of web servers and save the results in results.ndjson (ensure to change the
interface name to match an active interface on your machine):

pspdr measure -i eth0 ecn </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

Note

If you’ve not installed PATHspider from apt, you will find the webinput.ndjson
example input file in the examples folder of the source distribution.

Performing Passive Observation

PATHspider provides the “observe” command to perform passive traffic
observation for path transparency measurement. In this version of PATHspider
we do not attempt to determine path conditions during passive observation, and
instead only output flow records. This may change in future versions of
PATHspider.

You can list the available chains with --list-chains and then select any
number of chains that you would like to use. It is recommended that you include
the basic chain as this will add the IP addresses and port numbers to the
flow records.

You may specify the output file using a flag, however by default this is set to
be /dev/stdout and so you can, and are recommended to, use shell
redirection instead. To see output as it is written to the file, you can
pipe the output to tee to print it on the screen while also saving it to
a file. You will be required to set your interface name and PATHspider will not
start if it detects that the chosen interface is not active.

It is also possible to perform offline analysis of a PCAP file using the
“observe” command. Instead of an interface name, pass the name of the pcap file
to -i instead. The PCAP file must have a .pcap extension to be
recognised.

usage: pspdr observe [-h] [--list-chains] [-i INTERFACE] [--output OUTPUTFILE]
 [chains [chains ...]]

positional arguments:
 chains Observer chains to use

optional arguments:
 -h, --help show this help message and exit
 --list-chains Prints a list of available chains
 -i INTERFACE, --interface INTERFACE
 The interface to use for the observer. (Default: eth0)
 --output OUTPUTFILE The file to output results data to. Defaults to
 standard output.

Quickstart Example

You can observe network traffic passively to perform observations without
actively generating traffic. In this case no input file is needed.

pspdr observe -i eth0 basic tcp ecn >results.ndjson

Data Formats

PATHspider uses newline delimited JSON [http://ndjson.org/] (ndjson) for
both the input and output format. The ndjson format gives flexibility in the
contents of the data as different tests may require data to remain associated
with jobs so that it can be present in the final output (the Alexa ranking of a
webserver, for example), or used as part of the test (running tests against
authoritative DNS servers and needing to know a domain for which the server
should be authoritative).

Input Format

At a minimum, each job should contain an IP address in a dip field.
Depending on the plugin in use, more details may be required. Refer to the
documentation for the specific plugin for more information.

Output Format

For each job, the output JSON dictionary will contain the original job
information, a computed path using available information and a set of
conditions seen for the path as generated by the plugins.

With --output-flows enabled, PATHspider’s output will include an additional
field in the JSON dictionary for each job containing an array of flow records,
one for each configuration. Usually one record will be for the baseline (A)
connection, and one for the experimental (B) connection. These JSON records
contain the original job information, any information added by the connection
functions and any information added by the Observer.

Additionally, internal information may be retained:

	Key

	Description

	config

	0 for baseline, 1..n for experimental

	spdr_state

	0 = OK, 1 = TIMEOUT, 2 = FAILED, 3 = SKIPPED

For detail on the values in individual plugins, see the section for that plugin
later in this documentation.

Active Measurement Plugins

A number of plugins ship with the PATHspider distribution. You can find
documentation for them here:

	DSCP Plugin

	ECN Plugin

	Evil Bit Plugin

	H2 Plugin

	TCP Maximum Segment Size Plugin

	UDP Zero Checksum Plugin

3rd-Party Plugins

You will be able to list the 3rd-party plugins installed by running:

pathspider --help

There is no need to register 3rd-party plugins with PATHspider before use, they
will be automatically detected once they are installed.

DSCP Plugin

Differentiated services or DiffServ [RFC2474] is a networking architecture
that specifies a simple, scalable and coarse-grained mechanism for classifying
and managing network traffic and providing quality of service (QoS) on modern
IP networks. DiffServ can, for example, be used to provide low-latency to
critical network traffic such as voice or streaming media while providing
simple best-effort service to non-critical services such as web traffic or file
transfers.

DiffServ uses a 6-bit differentiated services code point (DSCP) in the 8-bit
differentiated services field (DS field) in the IP header for packet
classification purposes. The DS field and ECN field replace the outdated IPv4
TOS field. [RFC3260]

The DSCP plugin for PATHspider aims to detect breakage in the Internet due to
the use of a non-zero DSCP codepoint.

Usage Example

Note

The path given to the example list of web servers is taken from a
Debian GNU/Linux installation and may differ on your computer. These
are the same examples that can be found in the examples/ directory
of the source distribution.

To use the DSCP plugin, specify dscp as the plugin to use on the command-line:

pspdr measure -i eth0 dscp </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

This will run two HTTP GET request connections over TCP for each job input, one
with the DSCP set to zero (best-effort) and one with the DSCP set to 46
(expedited forwarding). If you would like to specify the code point for use on
the experimental flow, you may do this with the --codepoint option. For
example, to use 42:

pspdr measure -i eth0 dscp --codepoint 42 </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

Supported Connection Modes

This plugin supports the following connection modes:

	http - Performs a GET request

	tcp - Performs only a TCP 3WHS

	dnsudp - Performs a DNS query using UDP

	dnstcp - Performs a DNS query using TCP

To use an alternative connection mode, add the --connect argument to the
invocation of PATHspider:

pspdr measure -i eth0 dscp --connect tcp </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

Output Conditions

The following conditions are generated for the DSCP plugin:

dscp.X.connectivity.Y

For each connection that was observed by PATHspider, a connectivity condition
will be generated to indicate whether or not connectivity was successful using
codepoint X validated against a connection using codepoint 0 (zero).

Y may have the following values:

	works - Both connections succeeded

	broken - Baseline connection succeeded where experimental connection failed

	offline - Both connections failed

	transient - Baseline connection failed where experimental connection
succeeded (this can be used to give an indication of transient failure rates
included in the “broken” set)

dscp.X.replymark:

For each connection that was observed to have a response by PATHspider, a
condition is generated to show values of codepoints set on response packets
when codepoint X was set.

Notes

	DSCP marking is performed using the mangle table in iptables.
The config_zero function will flush this table. PATHspider makes no
guarantees the the configuration state is consistent once it has been set,
though you can use the forward path markings in the output to validate the
results within a reasonably high level of certainty that everything
behaved correctly.

ECN Plugin

Explicit Congestion Notification (ECN) is an extension to the Internet Protocol
and to the Transmission Control Protocol. [RFC3168] ECN allows end-to-end
notification of network congestion without dropping packets. ECN is an
optional feature that may be used between two ECN-enabled endpoints when the
underlying network infrastructure also supports it.

Conventionally, TCP/IP networks signal congestion by dropping packets. When ECN
is successfully negotiated, an ECN-aware router may set a mark in the IP header
instead of dropping a packet in order to signal impending congestion. The
receiver of the packet echoes the congestion indication to the sender, which
reduces its transmission rate as if it detected a dropped packet.

Rather than responding properly or ignoring the bits, some outdated or faulty
network equipment has historically dropped or mangled packets that have ECN
bits set. As of 2015, measurements suggested that the fraction of web servers
on the public Internet for which setting ECN prevents network connections had
been reduced to less than 1%. [Trammell15]

The ECN plugin for PATHspider aims to detect breakage in the Internet due to
the use of ECN.

Usage Example

Note

The path given to the example list of web servers is taken from a
Debian GNU/Linux installation and may differ on your computer. These
are the same examples that can be found in the examples/ directory
of the source distribution.

To use the ECN plugin, specify ecn as the plugin to use on the command-line:

pspdr measure -i eth0 ecn </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

This will run two TCP connections for each job input, one with ECN disabled in
the kernel TCP/IP stack and one with ECN enabled in the kernel TCP/IP stack.

Supported Connection Modes

This plugin supports the following connection modes:

	http - Performs a GET request

	https - Performs a GET request using HTTPS

	tcp - Performs only a TCP 3WHS

	dnstcp - Performs a DNS query using TCP

To use an alternative connection mode, add the --connect argument to the
invocation of PATHspider:

pspdr measure -i eth0 ecn --connect tcp </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

Output Conditions

The following conditions are generated for the ECN plugin:

ecn.connectivity.Y

For each connection that was observed by PATHspider, a connectivity condition
will be generated to indicate whether or not connectivity was successful using
ECN against a connection not using ECN.

Y may have the following values:

	works - Both connections succeeded

	broken - Baseline connection succeeded where experimental connection failed

	offline - Both connections failed

	transient - Baseline connection failed where experimental connection
succeeded (this can be used to give an indication of transient failure rates
included in the “broken” set)

ecn.negotiation.Y

For each experimental connection that was observed to have a response by PATHspider, a
condition is generated to show whether or not ECN negotiation succeded between
the two hosts.

Y may have the following values:

	succeeded - ECN negotiation succeeded

	reflected - ECN negotiation failed, with both ECE and CWR set on reply SYN

	failed - ECN negotiation failed

ecn.ipmark.X.Y

For each connection that was observed by PATHspider, a condition is generated
to record the ECN marks seen. Y has two possible values, “seen” or “not_seen”,
corresponding to whether or not mark X was encountered.

X may have the following values:

	ect0 - ECN Capable Transport (0)

	ect1 - ECN Capable Transport (1)

	ce - Congestion Experienced

Notes

	ECN behaviour is implemented by the host kernel for PATHspider, and is
switched by a sysctl call. PATHspider makes no guarantees the the
configuration state is consistent once it has been set, though you can use
the forward SYN flags in the output to validate the results within a
reasonably high level of certainty that everything behaved correctly.

Evil Bit Plugin

The Evil Bit refers to the unused high-order bit of the IP fragment offset
field in the IP header. It was defined in RFC3514 on the 1st of April 2003.

The Evil Bit plugin for PATHspider aims to detect breakage in the Internet due
to the use of reserved bit in the IP fragment offset field.

Usage Example

Note

The path given to the example list of web servers is taken from a
Debian GNU/Linux installation and may differ on your computer. These
are the same examples that can be found in the examples/ directory
of the source distribution.

To use the EvilBit plugin, specify evilbit as the plugin to use on the
command-line:

pspdr measure -i eth0 evilbit </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

This will run two TCP connections for each job input, one with the evil bit not
set and one with the evil bit set (indicating the packet’s malicious intent).

Supported Connection Modes

This plugin supports the following connection modes:

	tcp - Performs only a TCP 3WHS

	dnsudp - Performs a DNS query using UDP

To use an alternative connection mode, add the --connect argument to the
invocation of PATHspider:

pspdr measure -i eth0 evilbit --connect tcp </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

Output Conditions

The following conditions are generated for the evilbit plugin:

evilbit.X.connectivity.Y

For each connection that was observed by PATHspider, a connectivity condition
will be generated to indicate whether or not connectivity with the evil bit set
was successful validated against a connection without the evil bit set.

Y may have the following values:

	works - Both connections succeeded

	broken - Baseline connection succeeded where experimental connection failed

	offline - Both connections failed

	transient - Baseline connection failed where experimental connection
succeeded (this can be used to give an indication of transient failure rates
included in the “broken” set)

evilbit.mark.X

A condition is generated to show whether the evil bit was set on the return
path for the experimental connection. X can have two values, “seen” or
“not_seen”.

Notes

	The evil bit is set using packet forging library Scapy. Due to the lack of a
TCP state machine, connection types such as HTTP are not available.

H2 Plugin

HTTP/2 (originally named HTTP/2.0) is a major revision of the HTTP network
protocol used in the Internet.

The HTTP Upgrade mechanism is used to establish HTTP/2 starting from plain
HTTP. The client starts a HTTP/1.1 connection and sends “Upgrade: h2c” header.
If the server supports HTTP/2, it replies with HTTP 101 Switching Protocol
status code. The HTTP Upgrade mechanism is used only for cleartext HTTP2 (h2c).
In the case of HTTP2 over TLS (h2), the ALPN TLS protocol extension is used
instead.

The h2 plugin for PATHspider aims to detect breakage in the Internet due to
the use of HTTP/2.

Usage Example

Note

The path given to the example list of web servers is taken from a
Debian GNU/Linux installation and may differ on your computer. These
are the same examples that can be found in the examples/ directory
of the source distribution.

To use the H2 plugin, specify h2 as the plugin to use on the command-line:

pspdr measure -i eth0 h2 </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

This will run two HTTP GET request connections over TCP for each job input, one
without requesting an upgrade and one requesting an upgrade to HTTP/2.

Supported Connection Modes

This plugin supports the following connection modes:

	http - Performs a GET request

	https - Performs a GET request using HTTPS

To use an alternative connection mode, add the --connect argument to the
invocation of PATHspider:

pspdr measure -i eth0 h2 --connect https </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

Output Conditions

The following conditions are generated for the H2 plugin:

h2.connectivity.X

For each connection that was observed by PATHspider, a connectivity condition
will be generated to indicate whether or not connectivity was successful using
HTTP/2 against a connection using HTTP/1.1.

Y may have the following values:

	works - Both connections succeeded

	broken - Baseline connection succeeded where experimental connection failed

	offline - Both connections failed

	transient - Baseline connection failed where experimental connection
succeeded (this can be used to give an indication of transient failure rates
included in the “broken” set)

h2.upgrade.X

For each connection that was observed by PATHspider, a connectivity condition
will be generated to indicate whether or not an upgrade request to HTTP/2 was
successful. X can have two values, “success” or “failed”.

Notes

	The H2 plugin uses cURL options to set the HTTP version to be used for the
request and uses the version negotiation techniques built-in to cURL.

TCP Maximum Segment Size Plugin

The Transmission Control Protocol (TCP) Maximum Segment Size (MSS) option was
one of the TCP options defined in the very first specification for TCP
[RFC793]:

If this option is present, then it communicates the maximum
receive segment size at the TCP which sends this segment.
This field must only be sent in the initial connection request
(i.e., in segments with the SYN control bit set). If this
option is not used, any segment size is allowed.

Due to the prevalent blocking of ICMP throughout the Internet (if you do this,
please stop!), path maximum transmission unit (PMTU) discovery often fails to
correctly determine the MTU that can safely be used between two hosts. As an
alternative strategy, routers can rewrite the TCP MSS option present on SYN
packets to ensure that the MSS seen by the receiving end of the packets is not
greater than that which is supported on the links connected to that router.

The MSS plugin for PATHspider aims to discover the value of MSS that is
received when connecting to hosts using TCP and compares this to the local
MTU to determine if the received MSS is lower (possibly indicating the clamping
behaviour described above), equal or greater (possibly indicating an unsafe
MSS) than the local MSS.

Usage Example

Note

The path given to the example list of web servers is taken from a
Debian GNU/Linux installation and may differ on your computer. These
are the same examples that can be found in the examples/ directory
of the source distribution.

To use the MSS plugin, specify mss as the plugin to use on the command-line:

pspdr measure -i eth0 mss </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

This will open a TCP connection for each job input, recording the received MSS
for each reply.

Supported Connection Modes

This plugin supports the following connection modes:

	tcp - Performs a TCP connection

	http - Performs a GET request

	https - Performs a GET request using HTTPS

	dnstcp - Performs a DNS query using TCP

To use an alternative connection mode, add the --connect argument to the
invocation of PATHspider:

pspdr measure -i eth0 mss --connect tcp </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

Output Conditions

The following conditions are generated for the MSS plugin:

mss.connectivity.Y

For each connection that was observed by PATHspider, a connectivity condition
will be generated to indicate whether or not connectivity was successful using
TFO validated against a connection not using TFO.

Y may have the following values:

	online - The connection succeeded

	offline - The connection failed

mss.option.X.value:Y

For each connection that was observed to have a response by PATHspider and
observed to have an MSS option in the TCP header, a condition is generated to
show the value of the MSS option.

X can have two values, “local” or “remote”, idicating whther the option was
sent locally or received from the remote target (possibly having been rewritten
on the path). Y is the value of the option.

mss.option.received.X

For each connection that was observed to have a response by PATHspider, a
condition is generated to show whether the MSS option was absent or present.
If present, it will be compared to the local MSS. X can have the following
values:

	absent - The response from the remote target did not contain an MSS option
in the TCP header.

	unchanged - The MSS option received from the remote target contained the
same value as the local MSS.

	inflated - The MSS option received from the remote target contained a greater
MSS than the local MSS.

	deflated - The MSS option received from the remote target contained a lower
MSS than the local MSS.

UDP Zero Checksum Plugin

UDP uses a 16-bit field to store a checksum for data integrity. The UDP
checksum field [RFC768] is calculated using information from the pseudo-IP
header, the UDP header, and the data is padded at the end if necessary to
make a multiple of two octets. The checksum is optional when using IPv4, and
if unused a UDP checksum field carrying all zeros indicates the transmitter did
not compute the checksum.

The UDPZero plugin for PATHspider aims to detect breakage in the Internet due
to the use a zero-checksum field.

Usage Example

Note

The path given to the example list of web servers is taken from a
Debian GNU/Linux installation and may differ on your computer. These
are the same examples that can be found in the examples/ directory
of the source distribution.

To use the UDPZero plugin, specify udpzero as the plugin to use on the
command-line:

pspdr measure -i eth0 udpzero </usr/share/doc/pathspider/examples/webtest.ndjson >results.ndjson

This will run two DNS request connections over UDP for each job input, one with
the checksum field unmodified and one with the checksum field set to all zeros.

Supported Connection Modes

This plugin supports the following connection modes:

	dnsudp - Performs a DNS query using UDP

Output Conditions

The following conditions are generated for the UDPZero plugin:

udpzero.connectivity.Y

For each connection that was observed by PATHspider, a connectivity condition
will be generated to indicate whether or not connectivity was successful using
UDP zero-checksum validated against a connection with the calculated checksum
left intact.

Y may have the following values:

	works - Both connections succeeded

	broken - Baseline connection succeeded where experimental connection failed

	offline - Both connections failed

	transient - Baseline connection failed where experimental connection
succeeded (this can be used to give an indication of transient failure rates
included in the “broken” set)

Notes

	Setting the UDP checksum field to all zeros is performed using Python library
Scapy.

Passive Observation

The passive observation modules (sometimes referred to as “observer chains”)
are used by the active measurement plugins, but can also be used independently.
At this time, it is not possible to create new passive observation modules
as plugins unless they are part of an active measurement plugin.

A number of modules ship with the PATHspider distribution. You can find their
documentation here:

	Basic Chain

	DNS Chain

	DSCP Chain

	ECN Chain

	Evil Bit Chain

	ICMP Chain

	TCP Maximum Segment Size Chain

	TCP Chain

	TCP Fast Open Chain

	UDP Chain

Basic Chain

This module contains the BasicChain flow analysis chain which can be used by
PATHspider’s Observer for recording source and destination addresses and
packet/octet counts.

	
class pathspider.chains.basic.BasicChain

	This flow analysis chain records details from the TCP/IP headers.

	Field Name

	Type

	Meaning

	dip

	str

	Layer 3 (IPv4/IPv6) source address

	sp

	int

	Layer 4 (TCP/UDP) source port

	dp

	int

	Layer 4 (TCP/UDP) destination port

	pkt_fwd

	int

	A count of the number of packets seen in the
forward direction

	pkt_rev

	int

	A count of the number of packets seen in the
reverse direction

	oct_fwd

	int

	A count of the number of octets seen in the
forward direction

	oct_rev

	int

	A count of the number of octets seen in the
reverse direction

	
new_flow(rec, ip)

	New flow function that sets up basic flow information

DNS Chain

This module contains the DNSChain flow analysis chain which can be used by
PATHspider’s Observer for recording Domain Name System [RFC1035] details.

	
class pathspider.chains.dns.DNSChain

	This flow analysis chain records details from Domain Name System
application data.

	Field Name

	Type

	Meaning

	dns_response_valid

	bool

	The flow contained a valid DNS response

	
new_flow(rec, ip)

	For a new flow, all fields will be initialised to False.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip or plt.ip6) – the IP or IPv6 packet that triggered the creation of a new
flow record

	Returns

	Always True

	Return type

	bool

	
tcp(rec, tcp, rev)

	Records DNS details from TCP segment.

	DNS Response

	If the packet contains a payload, an attempt is made to parse it
and if successful the dns_response_valid field is set to True
if it was a response (not a query).

	Parameters

	
	rec (dict) – the flow record

	tcp – the TCP packet that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	False if a valid DNS response has been seen, otherwise True

	Return type

	bool

	
udp(rec, udp, rev)

	Records DNS details from UDP datagram.

	DNS Response

	If the packet contains a payload, an attempt is made to parse it
and if successful the dns_response_valid field is set to True
if it was a response (not a query).

	Parameters

	
	rec (dict) – the flow record

	tcp – the UDP packet that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	False if a valid DNS response has been seen, otherwise True

	Return type

	bool

DSCP Chain

This module contains the DSCPChain flow analysis chain which can be used by
PATHspider’s Observer for recording Differentiated Services [RFC2474] details.

	
class pathspider.chains.dscp.DSCPChain

	This flow analysis chain records details of the Differentiated Services
Field in the IP header.

	Field Name

	Type

	Meaning

	dscp_mark_syn_fwd

	int

	The value of the Differentiated Services
codepoint seen on a TCP SYN packet in the
forward direction

	dscp_mark_data_fwd

	int

	The value of the Differentiated Services
codepoint seen on a non-TCP packet or a TCP
packet with a payload in the forward direction

	dscp_mark_syn_rev

	int

	The value of the Differentiated Services
codepoint seen on a TCP SYN packet in the
reverse direction

	dscp_mark_data_rev

	int

	The value of the Differentiated Services
codepoint seen on a non-TCP packet or a TCP
packet with a payload in the reverse direction

	
ip4(rec, ip, rev)

	Records DSCP markings from an IPv4 header.

	DSCP Marking

	For the first TCP SYN packet and the first non-TCP packet or TCP
packet with a payload, the DSCP value will be recorded in the
relevant field.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip) – the IPv4 packet that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	Always True

	Return type

	bool

	
ip6(rec, ip, rev)

	Records DSCP markings from an IPv6 header.

	DSCP Marking

	For the first TCP SYN packet and the first non-TCP packet or TCP
packet with a payload, the DSCP value will be recorded in the
relevant field.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip6) – the IPv6 packet that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	Always True

	Return type

	bool

	
new_flow(rec, ip)

	For a new flow, all fields will be initialised to None.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip or plt.ip6) – the IP or IPv6 packet that triggered the creation of a new
flow record

	Returns

	Always True

	Return type

	bool

ECN Chain

This module contains the ECNChain flow analysis chain which can be used by
PATHspider’s Observer for recording Explicit Congestion Notification [RFC3168]
details.

	
class pathspider.chains.ecn.ECNChain

	This flow analysis chain records details of ECN markings in the IP header.

	Field Name

	Type

	Meaning

	ecn_ect0_syn_fwd

	bool

	An ECT0 mark was seen in the forward direction
on a TCP SYN packet

	ecn_ect1_syn_fwd

	bool

	An ECT1 mark was seen in the forward direction
on a TCP SYN packet

	ecn_ce_syn_fwd

	bool

	An CE mark was seen in the forward direction
on a TCP SYN packet

	ecn_ect0_data_fwd

	bool

	An ECT0 mark was seen in the forward direction
on a TCP packet with a payload or a non-TCP packet

	ecn_ect1_data_fwd

	bool

	An ECT1 mark was seen in the forward direction
on a TCP packet with a payload or a non-TCP packet

	ecn_ce_data_fwd

	bool

	An CE mark was seen in the forward direction
on a TCP packet with a payload or a non-TCP packet

	ecn_ect0_syn_rev

	bool

	An ECT0 mark was seen in the reverse direction
on a TCP SYN packet

	ecn_ect1_syn_rev

	bool

	An ECT1 mark was seen in the reverse direction
on a TCP SYN packet

	ecn_ce_syn_rev

	bool

	An CE mark was seen in the reverse direction
on a TCP SYN packet

	ecn_ect0_data_rev

	bool

	An ECT0 mark was seen in the reverse direction
on a TCP packet with a payload or a non-TCP packet

	ecn_ect1_data_rev

	bool

	An ECT1 mark was seen in the reverse direction
on a TCP packet with a payload or a non-TCP packet

	ecn_ce_data_rev

	bool

	An CE mark was seen in the reverse direction
on a TCP packet with a payload or a non-TCP packet

	
ip4(rec, ip, rev)

	Records ECN markings from an IPv4 header.

	ECN Marking

	If an ECT0, ECT1 or CE mark is seen in the IPv4 header, the relevant
field will be set to True.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip) – the IPv4 packet that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	Always True

	Return type

	bool

	
ip6(rec, ip, rev)

	Records ECN markings from an IPv6 header.

	ECN Marking

	If an ECT0, ECT1 or CE mark is seen in the IPv6 header, the relevant
field will be set to True.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip6) – the IPv6 packet that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	Always True

	Return type

	bool

	
new_flow(rec, ip)

	For a new flow, all fields will be initialised to False.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip or plt.ip6) – the IP or IPv6 packet that triggered the creation of a new
flow record

	Returns

	Always True

	Return type

	bool

Evil Bit Chain

This module contains the EvilChain analysis chain which can be used by
PATHspider’s Observer for recording Evil Bit connectivity [RFC3514] details.

	
class pathspider.chains.evil.EvilChain

	

	Field Name

	Type

	Meaning

	evilbit_syn_fwd

	bool

	True if the evil bit was set in the IP header
for a TCP SYN packet in the forward direction,
false otherwise

	evilbit_syn_fwd

	bool

	True if the evil bit was set in the IP header
for a TCP SYN packet in the reverse direction,
false otherwise

	evilbit_data_fwd

	bool

	True if the evil bit was set in the IP header
for a non-TCP packet in the forward direction,
false otherwise

	evilbit_data_rev

	bool

	True if the evil bit was set in the IP header
for a non-TCP packet in the reverse direction,
false otherwise

	
ip4(rec, ip, rev)

	Records evil bit markings from an IPv4 header.

	Evil Bit Marking

	For either TCP_SYN packets or non-TCP or TCP with payload packets
the relevant field will record whether the Evil Bit was set.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip) – the IPv4 packet that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	Always True

	Return type

	bool

	
new_flow(rec, ip)

	For a new flow, all fields will be initialised to None.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip or plt.ip6) – the IP or IPv6 packet that triggered the creation of a new
flow record

	Returns

	Always True

	Return type

	bool

ICMP Chain

This module contains the ICMPChain flow analysis chain which can be used by
PATHspider’s Observer for recording ICMPv4 [RFC792] and ICMPv6 [RFC4443]
details.

	
pathspider.chains.icmp.ICMP4_TTLEXCEEDED = 11

	ICMPv4 Message Type - TTL Exceeded

	
pathspider.chains.icmp.ICMP4_UNREACHABLE = 3

	ICMPv4 Message Type - Unreachable

	
pathspider.chains.icmp.ICMP6_TTLEXCEEDED = 3

	ICMPv6 Message Type - Time Exceeded

	
pathspider.chains.icmp.ICMP6_UNREACHABLE = 1

	ICMPv6 Message Type - Unreachable

	
class pathspider.chains.icmp.ICMPChain

	This flow analysis chain records details of ICMP messages in
the flow record. It will record when a message of certain types have been
seen during a flow.

	Field Name

	Type

	Meaning

	icmp_unreachable

	bool

	An ICMP unreachable message was seen in the reverse
direction

	
icmp4(rec, ip, q, rev)

	Records ICMPv4 details.

	ICMPv4 Unreachable Messages

	Sets icmp_unreachable to True if an ICMP Unreachable
message is seen in the reverse direction.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip) – the IPv4 packet that was observed to be part of this flow
and contained an ICMPv4 header

	q (plt.ip) – the ICMP quotation of the packet that triggered this message
(if any)

	rev (bool) – True if the packet was in the reverse direction,
False if in the forward direction

	Returns

	False if an ICMP unreachable message has been observed,
otherwise True

	Return type

	bool

	
icmp6(rec, ip6, q, rev)

	Records ICMPv6 details.

	ICMPv6 Unreachable Messages

	Sets icmp_unreachable to True if an ICMP Unreachable
message is seen in the reverse direction.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip6) – the IPv6 packet that was observed to be part of this flow
and contained an ICMPv6 header

	q (plt.ip) – the ICMP quotation of the packet that triggered this message
(if any)

	rev (bool) – True if the packet was in the reverse direction,
False if in the forward direction

	Returns

	False if an ICMP unreachable message has been observed,
otherwise True

	Return type

	bool

	
new_flow(rec, ip)

	For a new flow, all fields will be initialised to False.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip or plt.ip6) – the IP or IPv6 packet that triggered the creation of a new
flow record

	Returns

	Always True

	Return type

	bool

TCP Maximum Segment Size Chain

This module contains the MSSChain flow analysis chain which can be used by
PATHspider’s Observer for recording TCP Maximum Segment Size details.

	
class pathspider.chains.mss.MSSChain

	This flow analysis chain records details of the TCP Maximum Segment Size
(MSS) option in the flow record. It will determine the length and value of
the field if present in SYN packets.

	Field Name

	Type

	Meaning

	mss_len_fwd

	int

	Length of the MSS option field including kind and length in the
forward direction.

	mss_len_rev

	int

	Length of the MSS option field including kind and length in the
reverse direction.

	mss_value_fwd

	int

	Value of the MSS option field in the forward direction.

	mss_value_rev

	int

	Value of the MSS option field in the reverse direction.

	
new_flow(rec, ip)

	For a new flow, all fields will be initialised to None.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip or plt.ip6) – the IP or IPv6 packet that triggered the creation of a new
flow record

	Returns

	Always True

	Return type

	bool

	
tcp(rec, tcp, rev)

	Records TCP Maximum Segment Size Details.

	TCP Maximum Segment Size

	The TCP options will be parsed for the MSS option for all SYN
packets. If the option is found, the length and value for the
option will be recorded in the flow.

	Parameters

	
	rec (dict) – the flow record

	tcp – the TCP segment that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	Always True

	Return type

	bool

TCP Chain

This module contains the TCPChain flow analysis chain which can be used by
PATHspider’s Observer for recording basic TCP [RFC793] behaviour details. This
module also contains a helper function that may be used by chains for the
parsing of TCP options and a number of useful TCP related constants that can be
used to interpret the results added to flow records by TCPChain.

	
class pathspider.chains.tcp.TCPChain

	This flow analysis chain records details of basic TCP behaviour in the
flow record. It will determine when a 3WHS has completed and has simplified
logic for determining when a TCP flow has completed.

	Field Name

	Type

	Description

	tcp_synflags_fwd

	int

	SYN flags seen in the forward direction

	tcp_synflags_rev

	int

	SYN flags seen in the reverse direction

	tcp_fin_fwd

	bool

	At least one FIN flag was seen in the forward direction

	tcp_fin_rev

	bool

	At least one FIN flag was seen in the reverse direction

	tcp_rst_fwd

	bool

	At least one RST flag was seen in the forward direction

	tcp_rst_rev

	bool

	At least one RST flag was seen in the reverse direction

	tcp_connected

	bool

	The 3WHS completed

	
new_flow(rec, ip)

	For a new flow, all fields will be initialised to False except
tcp_synflags_* which will be set to None.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip or plt.ip6) – the IP or IPv6 packet that triggered the creation of a new
flow record

	Returns

	Always True

	Return type

	bool

	
tcp(rec, tcp, rev)

	Records basic TCP behaviour details.

	SYN Flags

	This will record the SYN flags observed in each direction. These will
not be recorded again if there are futher segments in the flow with a
SYN bit set, the first SYN observed wins.

	FIN and RST Flags

	If a segment has the FIN or RST flags, the relevant fields are set
to true.

	3WHS

	If a SYN was observed in the forward direction, and a SYNACK in the
reverse direction and the segment passed is an ACK in the forward
direction then tcp_connected will be set to True.

	Flow Completion

	If a FIN has been observed in one direction and this segment
contains a FIN in the other direction, a flow is considered
complete. If a RST has been observed in either direction, a flow is
considered complete.

	Parameters

	
	rec (dict) – the flow record

	tcp – the TCP segment that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	True if flow should continue to be observed, False if the flow
should be passed on for merging (i.e. the flow is complete)

	Return type

	bool

	
pathspider.chains.tcp.TCP_ACK = 16

	TCP Flag - ACK

	
pathspider.chains.tcp.TCP_CWR = 128

	TCP Flag - CWR

	
pathspider.chains.tcp.TCP_ECE = 64

	TCP Flag - ECE

	
pathspider.chains.tcp.TCP_FIN = 1

	TCP Flag - FIN

	
pathspider.chains.tcp.TCP_PSH = 8

	TCP Flag - PSH

	
pathspider.chains.tcp.TCP_RST = 4

	TCP Flag - RST

	
pathspider.chains.tcp.TCP_SA = 18

	TCP Flags - SYN and ACK

	
pathspider.chains.tcp.TCP_SAE = 82

	TCP Flags - SYN, ACK, ECE

	
pathspider.chains.tcp.TCP_SAEC = 210

	TCP Flags - SYN, ACK, ECE and CWR

	
pathspider.chains.tcp.TCP_SEC = 194

	TCP Flags - SYN, ACK and ECE

	
pathspider.chains.tcp.TCP_SYN = 2

	TCP Flag - SYN

	
pathspider.chains.tcp.TCP_URG = 32

	TCP Flag - URG

	
pathspider.chains.tcp.TO_EOL = 0

	TCP Option - End of options list

	
pathspider.chains.tcp.TO_EXID_FASTOPEN = (249, 137)

	TCP Option Experiment ID - TCP Fast Open

	
pathspider.chains.tcp.TO_EXPA = 254

	TCP Option - Experimental Option A

	
pathspider.chains.tcp.TO_EXPB = 255

	TCP Option - Experimental Option B

	
pathspider.chains.tcp.TO_FASTOPEN = 34

	TCP Option - TCP Fast Open Cookie

	
pathspider.chains.tcp.TO_MPTCP = 30

	TCP Option - Multipath TCP

	
pathspider.chains.tcp.TO_MSS = 2

	TCP Option - Maximum Segment Size

	
pathspider.chains.tcp.TO_NOP = 1

	TCP Option - No Operation

	
pathspider.chains.tcp.TO_SACK = 5

	TCP Option - Selective Acknowledgement

	
pathspider.chains.tcp.TO_SACKOK = 4

	TCP Option - Selective Acknowledgement Permitted

	
pathspider.chains.tcp.TO_TS = 8

	TCP Option - Timestamp

	
pathspider.chains.tcp.TO_WS = 3

	TCP Option - Window Scaling

	
pathspider.chains.tcp.tcp_options(tcp)

	Parses and extracts TCP options from a python-libtrace TCP object.

Warning

This is a pure Python implementation of a TCP options parser
and does not benefit from the speed advantage generally
realised by calling to libtrace functions written in C through
python-libtrace.

	Parameters

	tcp (plt.tcp) – The TCP header to extract options from

	Returns

	A mapping of option kinds to values

	Return type

	dict

TCP Fast Open Chain

This module contains the TFOChain flow analysis chain which can be used by
PATHspider’s Observer for recording TCP Fast Open [RFC7413] details.

	
class pathspider.chains.tfo.TFOChain

	This flow analysis chain records details of TCP Fast Open use in
the flow record. It will determine whether the IANA assigned TCP option
kind or the TCP Option Experiment ID [RFC6994] was used to identify the
option, and whether the data sent on the SYN was acknowledged.

	Field Name

	Type

	Meaning

	tfo_synkind

	int

	Identified by pathspider.chains.tcp.TO_{FASTOPEN,EXPA,EXPB}

	tfo_ackkind

	int

	Identified by pathspider.chains.tcp.TO_{FASTOPEN,EXPA,EXPB}

	tfo_synclen

	int

	TFO cookie length in the forward direction

	tfo_ackclen

	int

	TFO cookie length in the reverse direction

	tfo_dlen

	int

	Length of SYN payload in the forward direction

	tfo_ack

	int

	Bytes acknowledged on the SYN in the reverse direction

	
new_flow(rec, ip)

	For a new flow, all fields will be initialised to int(0).

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip or plt.ip6) – the IP or IPv6 packet that triggered the creation of a new
flow record

	Returns

	Always True

	Return type

	bool

	
tcp(rec, tcp, rev)

	Records TCP Fast Open details.

	TCP Option Used

	The TCP options will be parsed for options that use either the
IANA assigned TCP option number or one of the TCP Option Experiment
option numbers with the TCP Option Experiment ID used by TCP Fast
Open early in its standardisiation. If an option is found, the
method by which it was identified will be recorded in the
tfo_synkind field for the forward direction and tfo_ackkind
field for the reverse direction.

	TCP Fast Open Cookie Length

	The length of the cookies observed on TCP options will be recorded
in the tfo_synclen field for the forward direction and
tfo_ackclen for the reverse direction. If no Fast Open option
is found, this will remain at 0 when the flow is complete.

	Acknowledgement of SYN data

	The length of the data on the SYN in the forward direction will be
recorded in the tfo_dlen field. The TCP sequence number for the
SYN in the forward direction will be recorded in tfo_seq field
and the TCP acknowledgement number for the SYN in the reverse
direction will be recorded in the tfo_ack field.

	Parameters

	
	rec (dict) – the flow record

	tcp – the TCP segment that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	Always True

	Return type

	bool

UDP Chain

This module contains the UDPChain flow analysis chain which can be used by
PATHspider’s Observer for recording UDP details.

	
class pathspider.chains.udp.UDPChain

	

	Field Name

	Type

	Meaning

	udp_zero_checksum_fwd

	bool

	True if the last packet in the flow
in the forward direction had the UDP
checksum disabled (set to zero).

	udp_zero_checksum_rev

	bool

	True if the last packet in the flow
in the reverse direction had the UDP
checksum disabled (set to zero).

	
new_flow(rec, ip)

	For a new flow, all fields will be initialised to None.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip or plt.ip6) – the IP or IPv6 packet that triggered the creation of a new
flow record

	Returns

	Always True

	Return type

	bool

	
udp(rec, udp, rev)

	Records details from UDP datagram about the UDP header.

	Parameters

	
	rec (dict) – the flow record

	tcp – the UDP packet that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	Always True

	Return type

	bool

Resolving Target Lists

Built-in DNS Resolver

The resolver accepts input formatted as CSV in the style of the Alexa top 1
million website listing:

rank,domain

The output format is the native input format for PATHspider plugins. To get
started, you can use the included example list of domains:

sudo pspdr measure -i eth0 --csv dnsresolv </usr/share/doc/pathspider/examples/dnsresolvtest.csv

This built in resolver is implemented as a PATHspider measurement plugin to
demonstrate the flexibility of the plugin framework. For larger campaigns you
may instead wish to use the advanced DNS resolver available seperately.

Advanced DNS Resolver

Hellfire is a parallelised DNS resolver. It is written in Go and for the
purpose of generating input lists to PATHspider, though may be useful for other
applications. You will require Go to be installed on your computer before you
can use Hellfire.

Installation is via go get:

go get pathspider.net/hellfire/...

The following input types are supported:

	Alexa Top 1 Million Global Sites

	Cisco Umbrella 1 Million

	Citizen Lab Test Lists

	OpenDNS Public Domain Lists

	Comma-Seperated Values Files

	Plain Text Domain Lists

More information on usage can be found at the Hellfire website [https://pathspider.net/hellfire/].

Developing Plugins

PATHspider is written to be extensible and the plugins that are included in the
PATHspider distribution are examples of the measurements that PATHspider can
perform.

pathspider.plugins is a namespace package. Namespace packages are a
mechanism for splitting a single Python package across multiple directories on
disk. One or more distributions may provide modules which exist inside the same
namespace package. The PATHspider distribution’s plugins are installed in
pathspider.plugins, but also 3rd-party plugins can exist in this path
without being a part of the PATHspider distribution.

	Choosing a Plugin Model
	SynchronizedSpider Model

	DesynchronizedSpider Model

	SingleSpider Model

	ForgeSpider Model

	Plugin Basics
	Quickstart

	Directory Layout

	Running Your Plugin

	Common Plugin Features
	Plugin Metadata

	Command Line Arguments

	SynchronizedSpider Development
	Connection Modes

	Configuration Functions

	DesynchronizedSpider Development
	Connection Functions

	SingleSpider Development

	ForgeSpider Development
	Plugin Metadata

	Packet Forging

	Flow Analysis Chains
	Library Flow Analysis Chains

	Writing Flow Analysis Chains

Choosing a Plugin Model

To be as flexible as possible while using real network stacks, PATHspider has 4
models for plugins. The following flowchart can help you to decide which model
best suits your use case:

[image: Flowchart for choosing a plugin model]
A flowchart to help choosing a model for your plugin

SynchronizedSpider Model

This is the original model, where connection logic is built-in to PATHspider and
the plugin provides functions for altering the system-wide configuration.
Originally developed for testing with explicit congestion notification, this
model can be used wherever iptables rules, sysctl flags or other system-wide
configuration changes can be used to enable or disable a particular feature
of a network protocol.

DesynchronizedSpider Model

This model was developed for TCP fast open where synchronization was not
required. In this case, socket options are used to control whether or not the
feature is used and so the global synchronization only serves to slow down
measurements. The connection helper you are using must support the feature
which means for most helpers that it must be supported by both libcurl and
pycurl.

SingleSpider Model

This model was developed for TCP Maximum Segment Size discovery. In this case,
only a single connection is required with no global configuration or
customisation of the connection. All work is done by the Observer or using the
output of the connection helpers.

ForgeSpider Model

This model was developed for evil bit testing where there was no support in the
native stack. It uses Scapy to forge packets and so is the most flexible, but
care must be taken to ensure that the baseline test is truly representative of
existing traffic on the Internet. As an example, some firewall drop TCP packets
that do not use timestamps as a “defense” against forged packets.

Plugin Basics

Quickstart

The directory layout and example plugin below can be found in the
pathspider-example GitHub repository [https://github.com/mami-project/pathspider-example/]. You can get going
quickly by forking this repository and using that as a basis for plugin
development. The repository has templates for a Synchronized, a Desynchronized
and a Forge plugin.

Directory Layout

pathspider.plugins is a namespace package. Namespace packages are a
mechanism for splitting a single Python package across multiple directories on
disk. One or more distributions may provide modules which exist inside the same
namespace package. The PATHspider distribution’s plugins are installed in
pathspider.plugins, but also 3rd-party plugins can exist in this path
without being a part of the PATHspider distribution.

To get started you will need to create the required directory layout for
PATHspider plugins, in this case for the Example plugin:

pathspider-example
└── pathspider
 ├── __init__.py
 └── plugins
 ├── __init__.py
 └── example.py

Inside both __init__.py files, you will need to add the following (and only
the following):

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

Your plugin will be written in example.py and this plugin will be
discovered automatically when you run PATHspider.

Running Your Plugin

In order to run your plugin, in the root of your plugin source tree run:

PYTHONPATH=. pspdr measure -i eth0 example </usr/share/doc/pathspider/examples/webtest.ndjson

Unless you install your plugin, you will need to add the plugin tree to the
PYTHONPATH to allow the plugin to be discovered.

Common Plugin Features

Plugin Metadata

All plugins should contain basic metadata that is used internally within
PATHspider for generating help text and command line options. This takes the
form of class variables that by convention are at the start of the class.

	Name

	Description

	name

	A short name for the plugin used in the
command line invocation of PATHspider

	description

	A human readable description of the plugin
used in help text

	version

	A version number for the plugin

For example, from the DSCP plugin:

class DSCP(SynchronizedSpider, PluggableSpider):

 name = "dscp"
 description = "Differentiated Services Codepoints"
 version = "1.0.0"

Note

Plugins that ship with PATHspider set version to
pathspider.base.__version__. This should only be done by plugins
that are part of the PATHspider distribution as this allows these
plugins to have the same version as PATHspider, which would be
useless for 3rd-party plugins that release independently.

Command Line Arguments

Depending on the type of plugin, default command line arguments will be added
for your plugin. You can add additional command line arguments by adding
a static method to your plugin named extra_args().

For example, from the DSCP plugin:

@staticmethod
def extra_args(parser):
 parser.add_argument(
 "--codepoint",
 type=int,
 choices=range(0, 64),
 default='48',
 metavar="[0-63]",
 help="DSCP codepoint to send (Default: 48)")

SynchronizedSpider Development

SynchronizedSpider plugins use built-in connection methods along with global
system configuration to change the behaviour of the connections.

Connection Modes

The following connection types are built-in to PATHspider:

	Name

	Description

	tcp

	Perform a TCP handshake

	http

	Perform an HTTP GET request

	https

	Perform an HTTP GET request using TLS

	dnsudp

	Perform a DNS query using UDP

	dnstcp

	Perform a DNS query using TCP

To indicate the connection types that are supported by your plugin,
use the connect_supported metadata variable. The first type listed
in the variable will be the default connection type for the plugin.

For example, if your plugin supports all the TCP based connection types and you
would like plain HTTP to be the default:

class SynchronizedSpiderPlugin(SynchronizedSpider, PluggableSpider):
 connect_supported = ["http", "https", "tcp", "dnstcp"]

Configuration Functions

Configuration functions are at the heart of a SynchronizedSpider plugin.
These may make calls to sysctl or iptables to make changes to the way
that traffic is generated.

One function should be written for each of the configurations and PATHspider
will ensure that the configurations are set before the corresponding traffic is
generated. It is the responsibility of plugin authors to ensure that any
configuration is reset by the next configuration function if that is
required.

By convention, functions should be prefixed with config_ to ensure there
are no conflicts. After declaring the functions, you must then set the
configurations metadata variable with pointers to each of the configuration
functions.

The following shows the relevant portions of the ECN plugin, which uses this
framework:

class ECN(SynchronizedSpider, PluggableSpider):
 def config_no_ecn(self): # pylint: disable=no-self-use
 """
 Disables ECN negotiation via sysctl.
 """

 logger = logging.getLogger('ecn')
 subprocess.check_call(
 ['/sbin/sysctl', '-w', 'net.ipv4.tcp_ecn=2'],
 stdout=subprocess.DEVNULL,
 stderr=subprocess.DEVNULL)
 logger.debug("Configurator disabled ECN")

 def config_ecn(self): # pylint: disable=no-self-use
 """
 Enables ECN negotiation via sysctl.
 """

 logger = logging.getLogger('ecn')
 subprocess.check_call(
 ['/sbin/sysctl', '-w', 'net.ipv4.tcp_ecn=1'],
 stdout=subprocess.DEVNULL,
 stderr=subprocess.DEVNULL)
 logger.debug("Configurator enabled ECN")

 configurations = [config_no_ecn, config_ecn]

Warning

You must have the configurations variable after the declaration of
the functions, as otherwise you are attempting to reference functions that
have not yet been defined.

DesynchronizedSpider Development

DesynchronizedSpider plugins modify the connection logic in order to change the
behaviour of the connections. There is no global state synchronisation and so a
DesynchronizedSpider can be more efficient than a SynchronizedSpider.

Connection Functions

Connection functions are at the heart of a DesynchronizedSpider plugin. These
use a connection helper (or custom connection logic) to generate traffic
towards with a target to get a reply from the target.

One function should be written for each connection to be made, usually with at
least two function to provide a baseline followed by an experimental
connection.

By convention, functions should be prefixed with conn_ to ensure there are no
conflicts. After declaring the functions, you must then set the connections
metadata variable with pointers to each of the connection functions.

The following shows the relevant portions of the H2 plugin, which uses this
framework:

class H2(DesynchronizedSpider, PluggableSpider):
 def conn_no_h2(self, job, config): # pylint: disable=unused-argument
 if self.args.connect == "http":
 return connect_http(self.source, job, self.args.timeout)
 if self.args.connect == "https":
 return connect_http(self.source, job, self.args.timeout)
 else:
 raise RuntimeError("Unknown connection mode specified")

 def conn_h2(self, job, config): # pylint: disable=unused-argument
 curlopts = {pycurl.HTTP_VERSION: pycurl.CURL_HTTP_VERSION_2_0}
 curlinfos = {pycurl.INFO_HTTP_VERSION}
 if self.args.connect == "http":
 return connect_http(self.source, job, self.args.timeout, curlopts, curlinfos)
 if self.args.connect == "https":
 return connect_https(self.source, job, self.args.timeout, curlopts, curlinfos)
 else:
 raise RuntimeError("Unknown connection mode specified")

 connections = [conn_no_h2, conn_h2]

SingleSpider Development

SingleSpider uses the built-in connection helpers to make a single connection
to the target which is optionally observed by Observer chains.

This is the simplest model and only requires a combine_flows function to
generate conditions from the connection helper output and flow record output
from the Observer.

ForgeSpider Development

ForgeSpider plugins use Scapy to send forged packets to targets.

Plugin Metadata

As well as the common metadata, ForgeSpider plugins also require a packets
variable, containing the number of different packets that should be generated
for each target.

For example, if you had two different packets to be sent:

class ForgeSpiderPlugin(ForgeSpider, PluggableSpider):
 packets = 2

Packet Forging

As ForgeSpider uses Scapy, you will need to import any features from Scapy you
wish to use in order to construct your packets. Scapy provides a flexible
toolbox for packet forging, to learn more please refer to the Scapy project’s
documentation.

The heart of a ForgeSpider is the forge() function. This function takes two
arguments, the job containing the target information and the sequence number.
This function will be called the number of times set in the packets metadata
variable and seq will be set to the number of times the function has been
called for this job.

The function must return a Scapy Layer 3 packet. As a very basic example, a
function that forges a TCP SYN first, then a TCP RST:

def forge(self, job, seq):
 sport = 0
 while sport < 1024:
 sport = int(RandShort())
 l4 = TCP(sport=sport, dport=job['dp'])
 ip = IP(src=self.source[0], dst=job['dip'])
 if seq == 0:
 l4.flags = "S"
 if seq == 1:
 l4.flags = "R"
 return ip/l4

As jobs may be for both IPv4 and IPv6 targets, you should account for this and
build your packets using the correct Scapy functions for the IP version.
ForgeSpider also supports the --connect option and you can use this to
modify the type of packets generated in the forge function.

Flow Analysis Chains

PATHspider’s flow observer accepts analysis chains and passes python-libtrace [https://www.cs.auckland.ac.nz/~nevil/python-libtrace/] dissected packets
along with the associated flow record to them for every packet recieved. The
chains that are desired should be specified in the chains attribute of
your class as a list of classes. If this list is empty, which is the default if
not overridden in your class, no flow analysis will be performed. This can be
used during early development of your plugin while you work on the traffic
generation.

When you are ready to start working with flow analysis, you will need to expand
your chains attribute. You can see this in the following example:

from pathspider.chains.basic import BasicChain

class Example(SynchronizedSpider, PluggableSpider):

 name = "example"
 description = "An Example Plugin"
 version = "1.0"
 chains = [BasicChain, ...]

 ...

Depending on the types of analysis you would like to do on the packets, you
should add additional chains to the chains attribute of your plugin class.

Library Flow Analysis Chains

The pathspider.chains.basic.BasicChain chain creates inital
state for the flow record, extracting the 5-tuple and counting the number of
packets and octets in each direction. Unless you have good reason, this chain
should be included in your plugin as its fields are used by the merger to match
flow records with their corresponding jobs.

PATHspider also provides library flow analysis chains for some protocols and
extensions which you can find in the Observer page.

Writing Flow Analysis Chains

When you are ready to write a chain for the observer, first identify which
data should be stored in the flow record. This is a dict that is made
available for every call to a chain function for a particular flow
(identified by its 5-tuple) and not shared across flows.

Flow chains inherit from pathspider.chains.base.Chain and provide
a series of functions for handling different types of packet.

	
class pathspider.chains.base.Chain

	This is an abstract flow analysis chain. It is intended that all flow
analysis chains will subclass this class and it is not intended for this
class to be directly used by PATHspider plugins.

You should familiarise yourself with the python-libtrace documentation [https://www.cs.auckland.ac.nz/~nevil/python-libtrace/]. The analysis
functions all follow similar function prototypes with rec: the flow
record, x: the protocol header, and rev: boolean value indicating the
direction the packet travelled (i.e. was the packet in the reverse direction?).
The exception to this rule is for icmp4 and icmp6 which also provide a
q argument, the ICMP quotation if the message was a type that carries a
quotation otherwise this is set to None.

The only requirement for a flow analysis chain is that it provides a
new_flow() function. All other functions are optional. If the
new_flow() function does not return True, the flow will be discarded. All
other functions must return True unless they have identified that the flow
is complete and should be passed on to the merger. If this is not easily
detectable, a timeout will pass the flow for merging after a fixed interval
where no new packets have been seen.

You can find descriptions for each of the possible chain functions in
pathspider.chains.noop.NoOpChain:

	
class pathspider.chains.noop.NoOpChain

	This flow analysis chain does not perform any analysis and is present here
for the purpose of documentation and testing.

	
icmp4(rec, ip, q, rev)

	This function is called for every new ICMPv4 packet seen. It can be
used to record details for fields present in the ICMPv4 header or
quotation.

Note

The IP header is passed as the argument, not the ICMP header
as it may be desirable to access fields in the IP header, for
instance to determine the router or host that sent the ICMP
message

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip) – the IPv4 packet that was observed to be part of this flow
and contained an ICMPv4 header

	q (plt.ip) – the ICMP quotation of the packet that triggered this message
(if any)

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	True if flow should continue to be observed, False if the flow
should be passed on for merging (i.e. the flow is complete)

	Return type

	bool

	
icmp6(rec, ip6, q, rev)

	This function is called for every new ICMPv6 packet seen. It can be
used to record details for fields present in the ICMPv6 header or
quotation.

Note

The IP header is passed as the argument, not the ICMP header
as it may be desirable to access fields in the IP header, for
instance to determine the router or host that sent the ICMP
message

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip6) – the IPv6 packet that was observed to be part of this flow
and contained an ICMPv6 header

	q (plt.ip6) – the ICMP quotation of the packet that triggered this message
(if any)

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	True if flow should continue to be observed, False if the flow
should be passed on for merging (i.e. the flow is complete)

	Return type

	bool

	
ip4(rec, ip, rev)

	This function is called for every new IPv4 packet seen. It can be used
to record details for fields present in the IPv4 header.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip) – the IPv4 packet that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	True if flow should continue to be observed, False if the flow
should be passed on for merging (i.e. the flow is complete)

	Return type

	bool

	
ip6(rec, ip6, rev)

	This function is called for every new IPv6 packet seen. It can be used
to record details for fields present in the IPv6 header.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip6) – the IPv6 packet that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	True if flow should continue to be observed, False if the flow
should be passed on for merging (i.e. the flow is complete)

	Return type

	bool

	
new_flow(rec, ip)

	This function is called for every new flow to initialise a flow record
with the fields that will be used by this chain. It is recommended to
initialise all fields to None until other functions have set values for
them to make clear which fields are set by this chain and to avoid key
errors later.

	Parameters

	
	rec (dict) – the flow record

	ip (plt.ip or plt.ip6) – the IP or IPv6 packet that triggered the creation of a new
flow record

	Returns

	True if flow should be kept, False if flow should be discarded

	Return type

	bool

	
tcp(rec, tcp, rev)

	This function is called for every new TCP packet seen. It can be used
to record details for fields present in the TCP header.

	Parameters

	
	rec (dict) – the flow record

	tcp – the TCP segment that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	True if flow should continue to be observed, False if the flow
should be passed on for merging (i.e. the flow is complete)

	Return type

	bool

	
udp(rec, udp, rev)

	This function is called for every new UDP packet seen. It can be used
to record details for fields present in the UDP header.

	Parameters

	
	rec (dict) – the flow record

	tcp – the UDP segment that was observed to be part of this flow

	rev (bool) – True if the packet was in the reverse direction, False if
in the forward direction

	Returns

	True if flow should continue to be observed, False if the flow
should be passed on for merging (i.e. the flow is complete)

	Return type

	bool

PATHspider Internals

To learn more about the internals of PATHspider, you can find here an
overview of the key classes that make up the individual parts of the
architecture:

	Abstract Spider

	Desynchronized Spider

	Forge Spider

	Observer

	Synchronized Spider

Abstract Spider

The core functionality of PATHspider plugins is implemented in two classes:
pathspider.sync.SynchronizedSpider and
pathspider.desync.DesynchronizedSpider. There is also a third class,
pathspider.forge.ForgeSpider that inherits from
pathspider.desync.DesynchronizedSpider. These both inherit from the
base pathspider.base.Spider which provides a skeleton that has the
required functions for any plugin. The documentation for this base class is
below:

pathspider.base

Basic framework for Pathspider: coordinate active measurements on large target
lists with both system-level network stack state (sysctls, iptables rules, etc)
as well as information derived from flow-level passive observation of traffic at
the sender.

	
class pathspider.base.PluggableSpider

	
	
static register_args(subparsers)

	

	
class pathspider.base.Spider(worker_count, libtrace_uri, args, server_mode)

	A spider consists of a configurator (which alternates between two system
configurations), a large number of workers (for performing some network
action for each configuration), an Observer which derives information from
passively observed traffic, and a thread that merges results from the
workers with flow records from the collector.

	
add_job(job)

	Adds a job to the job queue.

If PATHspider is currently stopping, the job will not be added to the
queue.

	
chains = []

	

	
combine_flows(flows)

	

	
configurator()

	

	
create_observer()

	Create a flow observer.

This function is called by the base Spider logic to get an instance
of pathspider.observer.Observer configured with the function
chains that are requried by the plugin.

	
exception_wrapper(target, *args, **kwargs)

	

	
merge(flow, res)

	Merge a job record with a flow record.

	Parameters

	
	flow (dict) – The flow record.

	res (dict) – The job record.

	Returns

	tuple – Final record for job.

In order to create a final record for reporting on a job, the final job
record must be merged with the flow record. This function should
be implemented by any plugin to provide the logic for this merge as
the keys used in these records cannot be known by PATHspider in advance.

This method is not implemented in the abstract
pathspider.base.Spider class and must be implemented by any
plugin.

	
merger()

	Thread to merge results from the workers and the observer.

	
post_connect(job, rec, config)

	Performs post-connection operations.

	Parameters

	
	job (dict) – The job record.

	rec (dict) – The result of the connection operation(s).

	config (int) – The state of the configurator during
pathspider.base.Spider.connect().

The post_connect function can be used to perform any operations that
must be performed after each connection. It will be run for both the
A and the B configuration, and is not synchronized with the
configurator.

Plugins to PATHspider can optionally implement this function. If this
function is not overloaded, it will be a noop.

Any sockets or other file handles that were opened during
pathspider.base.Spider.connect() should be closed in this
function if they have not been already.

	
pre_connect(job)

	Performs pre-connection operations.

	Parameters

	job (dict) – The job record

The pre_connect function can be used to perform any operations that
must be performed before each connection. It will be run only once
per job, with the same result passed to both the A and B connect
calls. This function is not synchronized with the configurator.

Plugins to PATHspider can optionally implement this function. If this
function is not overloaded, it will be a noop.

	
shutdown()

	Shut down PathSpider in an orderly fashion,
ensuring that all queued jobs complete,
and all available results are merged.

	
start()

	This function starts a PATHspider plugin by:

	Setting the running flag

	Create and start an observer

	Start the merger thread

	Start the configurator thread

	Start the worker threads

The number of worker threads to start was given when activating the
plugin.

	
terminate()

	Shut down PathSpider as quickly as possible,
without any regard to completeness of results.

	
worker(worker_number)

	

Desynchronized Spider

This abstract class can be extended to produce new plugins that do not require
a system-wide configuration synchronization.

pathspider.desync

	
class pathspider.desync.DesynchronizedSpider(worker_count, libtrace_uri, args, server_mode=False)

	
	
configurator()

	Since there is no need for a configurator thread in a
desynchronized spider, this thread is a no-op

	
connections = []

	

	
classmethod register_args(subparsers)

	

	
worker(worker_number)

	This function provides the logic for
configuration-synchronized worker threads.

	Parameters

	worker_number (int) – The unique number of the worker.

The workers operate as continuous loops:

	Fetch next job from the job queue

	Perform pre-connection operations

	Acquire a lock for “config_zero”

	Perform the “config_zero” connection

	Release “config_zero”

	Acquire a lock for “config_one”

	Perform the “config_one” connection

	Release “config_one”

	Perform post-connection operations for config_zero and pass the
result to the merger

	Perform post-connection operations for config_one and pass the
result to the merger

	Do it all again

If the job fetched is the SHUTDOWN_SENTINEL, then the worker will
terminate as this indicates that all the jobs have now been processed.

Forge Spider

This abstract class can be extended to produce new plugins that are using
Scapy for packet forging.

pathspider.forge

	
class pathspider.forge.ForgeSpider(worker_count, libtrace_uri, args)

	
	
chains = [<class 'pathspider.chains.basic.BasicChain'>]

	

	
connect(job, seq)

	

	
forge(job, config)

	

	
packets = 0

	

	
pre_connect(job)

	

	
classmethod register_args(subparsers)

	

	
setup(job)

	

Observer

	
class pathspider.observer.DummyObserver

	The dummy observer provides a class compatible with the API of the Observer
class without actually performing any operations. This is primarily used
for PATHspider’s test suite.

	
run_flow_enqueuer(flowqueue, irqueue=None)

	When running the flow enqueuer, no network operation is performed and
the thread will block until given a shutdown signal. When the shutdown
signal is received it will cascade the signal onto the flowqueue
in the same way that a real Observer instance would.

	
class pathspider.observer.Observer(lturi, chains=None, idle_timeout=30, expiry_timeout=5)

	Wraps a packet source identified by a libtrace URI,
parses packets to divide them into flows, passing these
packets and flows onto a function chain to allow
data to be associated with each flow.

	
__init__(lturi, chains=None, idle_timeout=30, expiry_timeout=5)

	Create an Observer.

	Parameters

	chains – Array of Observer chain classes

	See also

	Observer Documentation

	
flush()

	

	
run_flow_enqueuer(flowqueue, irqueue=None)

	

	
class pathspider.observer.PacketClockTimer(time, fn)

	
	
fn

	Alias for field number 1

	
time

	Alias for field number 0

Synchronized Spider

This abstract class can be extended to produce new plugins that require a
system-wide configuration synchronization.

pathspider.sync

	
class pathspider.sync.SemaphoreN(value)

	An extension to the standard library’s BoundedSemaphore that provides
functions to handle n tokens at once.

	
acquire_n(value=1, blocking=True, timeout=None)

	Acquire value number of tokens at once.

The parameters blocking and timeout have the same semantics as
BoundedSemaphore.

	Returns

	The same value as the last call to BoundedSemaphore’s
acquire() if acquire() were called value
times instead of the call to this method.

	
empty()

	Acquire all tokens of the semaphore.

	
release_n(value=1)

	Release value number of tokens at once.

	Returns

	The same value as the last call to BoundedSemaphore’s
release() if release() were called value
times instead of the call to this method.

	
class pathspider.sync.SynchronizedSpider(worker_count, libtrace_uri, args, server_mode=False)

	
	
configurations = []

	

	
configurator()

	Thread which synchronizes on a set of semaphores and alternates
between two system states.

	
connect(job, config)

	Performs the requested connection.

	
classmethod register_args(subparsers)

	

	
worker(worker_number)

	This function provides the logic for
configuration-synchronized worker threads.

	Parameters

	worker_number (int) – The unique number of the worker.

The workers operate as continuous loops:

	Fetch next job from the job queue

	Perform pre-connection operations

	Acquire a lock for “config_zero”

	Perform the “config_zero” connection

	Release “config_zero”

	Acquire a lock for “config_one”

	Perform the “config_one” connection

	Release “config_one”

	Perform post-connection operations for config_zero and pass the
result to the merger

	Perform post-connection operations for config_one and pass the
result to the merger

	Do it all again

If the job fetched is the SHUTDOWN_SENTINEL, then the worker will
terminate as this indicates that all the jobs have now been processed.

References

	Honda11

	Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M. and Tokuda, H., 11, November. Is it still possible to extend TCP? [http://conferences.sigcomm.org/imc/2011/docs/p181.pdf]. In Proceedings of the 11 ACM SIGCOMM conference on Internet measurement conference (pp. 181-194). ACM.

	Trammell15

	Trammell, B., Kühlewind, M., Boppart, D., Learmonth, I., Fairhurst, G. and Scheffenegger, R., 15, March. Enabling Internet-wide deployment of explicit congestion notification [http://ecn.ethz.ch/ecn-pam15.pdf]. In International Conference on Passive and Active Network Measurement (pp. 193-205). Springer International Publishing.

	Gubser15

	Gubser, E., Measuring Explicit Congestion Negotiation (ECN) support based on P2P networks [http://www.tik.ee.ethz.ch/file/973ad8a64cf6599471c10df95e4ba93f/MT], 2015.

	RFC768

	Postel, J., 1980, User Datagram Protocol [https://tools.ietf.org/html/rfc768.html]. RFC Editor.

	RFC792

	Postel, J., 1981, Internet Control Message Protocol [https://tools.ietf.org/html/rfc792.html]. RFC Editor.

	RFC793

	Postel, J., 1981, Transmission Control Protocol [https://tools.ietf.org/html/rfc793.html]. RFC Editor.

	RFC1035

	Mockapetris, P., 1987. Domain Names - Impelmentation and Specification [https://tools.ietf.org/html/rfc1035.html]. RFC Editor.

	RFC2474

	Nichols, K., Blake, S., Baker, F. and Black, D., 1998. Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers [https://tools.ietf.org/html/rfc2474.html]. RFC Editor.

	RFC3168

	Ramakrishnan, K., Floyd, S. and Black, D., 2001. The addition of explicit congestion notification (ECN) to IP [https://tools.ietf.org/html/rfc3168.html]. RFC Editor.

	RFC3260

	Grossman, D., 2002. New terminology and clarifications for DiffServ [https://tools.ietf.org/html/rfc3260.html]. RFC Editor.

	RFC4443

	Conta, A., Deering, S., Gupta, M., 2006. Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification [https://tools.ietf.org/html/rfc4443.html]. RFC Editor.

	RFC6994

	Touch, J., 2013. Shared Use of Experimental TCP Options [https://tools.ietf.org/html/rfc6994.html]. RFC Editor.

	RFC7413

	Cheng, Y., Chu, J., Radhakrishnan, S. and Jain, A., 2014. TCP Fast Open [https://tools.ietf.org/html/rfc7413.html]. RFC Editor.

	RIPEAtlas

	Ripe, N.C.C.. RIPE atlas [http://atlas.ripe.net].

	Filasto12

	Filasto, A. and Appelbaum, J., 2012, August. OONI: Open Observatory of Network Interference [https://www.usenix.org/system/files/conference/foci12/foci12-final12.pdf]. In FOCI.

	Kreibich10

	Kreibich, C., Weaver, N., Nechaev, B. and Paxson, V., 2010, November. Netalyzr: illuminating the edge network [http://dl.acm.org/citation.cfm?id=1879173]. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (pp. 246-259). ACM.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pathspider	

 	
 	
 pathspider.base	

 	
 	
 pathspider.chains.basic	
 A flow analysis chain for basic TCP/IP flow information

 	
 	
 pathspider.chains.dns	
 A flow analysis chain for the Domain Name System

 	
 	
 pathspider.chains.dscp	
 A flow analysis chain for UDP

 	
 	
 pathspider.chains.ecn	
 A flow analysis chain for Explicit Congestion Notification

 	
 	
 pathspider.chains.evil	

 	
 	
 pathspider.chains.evilbit	
 A flow analysis chain for EvilBit

 	
 	
 pathspider.chains.icmp	

 	
 	
 pathspider.chains.mss	

 	
 	
 pathspider.chains.tcp	
 A flow analysis chain for TCP Fast Open

 	
 	
 pathspider.chains.tfo	

 	
 	
 pathspider.chains.udp	

 	
 	
 pathspider.desync	

 	
 	
 pathspider.forge	

 	
 	
 pathspider.observer	

 	
 	
 pathspider.sync	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (pathspider.observer.Observer method)

A

 	
 	acquire_n() (pathspider.sync.SemaphoreN method)

 	
 	add_job() (pathspider.base.Spider method)

B

 	
 	BasicChain (class in pathspider.chains.basic)

C

 	
 	chains (pathspider.base.Spider attribute)

 	(pathspider.forge.ForgeSpider attribute)

 	combine_flows() (pathspider.base.Spider method)

 	configurations (pathspider.sync.SynchronizedSpider attribute)

 	configurator() (pathspider.base.Spider method)

 	(pathspider.desync.DesynchronizedSpider method)

 	(pathspider.sync.SynchronizedSpider method)

 	
 	connect() (pathspider.forge.ForgeSpider method)

 	(pathspider.sync.SynchronizedSpider method)

 	connections (pathspider.desync.DesynchronizedSpider attribute)

 	create_observer() (pathspider.base.Spider method)

D

 	
 	DesynchronizedSpider (class in pathspider.desync)

 	DNSChain (class in pathspider.chains.dns)

 	
 	DSCPChain (class in pathspider.chains.dscp)

 	DummyObserver (class in pathspider.observer)

E

 	
 	ECNChain (class in pathspider.chains.ecn)

 	empty() (pathspider.sync.SemaphoreN method)

 	
 	EvilChain (class in pathspider.chains.evil)

 	exception_wrapper() (pathspider.base.Spider method)

F

 	
 	flush() (pathspider.observer.Observer method)

 	fn (pathspider.observer.PacketClockTimer attribute)

 	
 	forge() (pathspider.forge.ForgeSpider method)

 	ForgeSpider (class in pathspider.forge)

I

 	
 	icmp4() (pathspider.chains.icmp.ICMPChain method)

 	ICMP4_TTLEXCEEDED (in module pathspider.chains.icmp)

 	ICMP4_UNREACHABLE (in module pathspider.chains.icmp)

 	icmp6() (pathspider.chains.icmp.ICMPChain method)

 	ICMP6_TTLEXCEEDED (in module pathspider.chains.icmp)

 	ICMP6_UNREACHABLE (in module pathspider.chains.icmp)

 	
 	ICMPChain (class in pathspider.chains.icmp)

 	ip4() (pathspider.chains.dscp.DSCPChain method)

 	(pathspider.chains.ecn.ECNChain method)

 	(pathspider.chains.evil.EvilChain method)

 	ip6() (pathspider.chains.dscp.DSCPChain method)

 	(pathspider.chains.ecn.ECNChain method)

M

 	
 	merge() (pathspider.base.Spider method)

 	
 	merger() (pathspider.base.Spider method)

 	MSSChain (class in pathspider.chains.mss)

N

 	
 	new_flow() (pathspider.chains.basic.BasicChain method)

 	(pathspider.chains.dns.DNSChain method)

 	(pathspider.chains.dscp.DSCPChain method)

 	(pathspider.chains.ecn.ECNChain method)

 	(pathspider.chains.evil.EvilChain method)

 	(pathspider.chains.icmp.ICMPChain method)

 	(pathspider.chains.mss.MSSChain method)

 	(pathspider.chains.tcp.TCPChain method)

 	(pathspider.chains.tfo.TFOChain method)

 	(pathspider.chains.udp.UDPChain method)

O

 	
 	Observer (class in pathspider.observer)

P

 	
 	PacketClockTimer (class in pathspider.observer)

 	packets (pathspider.forge.ForgeSpider attribute)

 	pathspider.base (module)

 	pathspider.chains.basic (module), [1]

 	pathspider.chains.dns (module), [1]

 	pathspider.chains.dscp (module), [1], [2]

 	pathspider.chains.ecn (module), [1]

 	pathspider.chains.evil (module)

 	pathspider.chains.evilbit (module)

 	pathspider.chains.icmp (module)

 	pathspider.chains.mss (module)

 	
 	pathspider.chains.tcp (module), [1], [2], [3], [4]

 	pathspider.chains.tfo (module)

 	pathspider.chains.udp (module)

 	pathspider.desync (module)

 	pathspider.forge (module)

 	pathspider.observer (module)

 	pathspider.sync (module)

 	PluggableSpider (class in pathspider.base)

 	post_connect() (pathspider.base.Spider method)

 	pre_connect() (pathspider.base.Spider method)

 	(pathspider.forge.ForgeSpider method)

R

 	
 	register_args() (pathspider.base.PluggableSpider static method)

 	(pathspider.desync.DesynchronizedSpider class method)

 	(pathspider.forge.ForgeSpider class method)

 	(pathspider.sync.SynchronizedSpider class method)

 	release_n() (pathspider.sync.SemaphoreN method)

 	
 RFC

 	RFC 1035

 	RFC 2474

 	RFC 3168

 	RFC 3260

 	RFC 4443

 	RFC 6994

 	RFC 7413

 	RFC 768

 	RFC 792

 	RFC 793

 	
 	run_flow_enqueuer() (pathspider.observer.DummyObserver method)

 	(pathspider.observer.Observer method)

S

 	
 	SemaphoreN (class in pathspider.sync)

 	setup() (pathspider.forge.ForgeSpider method)

 	shutdown() (pathspider.base.Spider method)

 	
 	Spider (class in pathspider.base)

 	start() (pathspider.base.Spider method)

 	SynchronizedSpider (class in pathspider.sync)

T

 	
 	tcp() (pathspider.chains.dns.DNSChain method)

 	(pathspider.chains.mss.MSSChain method)

 	(pathspider.chains.tcp.TCPChain method)

 	(pathspider.chains.tfo.TFOChain method)

 	TCP_ACK (in module pathspider.chains.tcp)

 	TCP_CWR (in module pathspider.chains.tcp)

 	TCP_ECE (in module pathspider.chains.tcp)

 	TCP_FIN (in module pathspider.chains.tcp)

 	tcp_options() (in module pathspider.chains.tcp)

 	TCP_PSH (in module pathspider.chains.tcp)

 	TCP_RST (in module pathspider.chains.tcp)

 	TCP_SA (in module pathspider.chains.tcp)

 	TCP_SAE (in module pathspider.chains.tcp)

 	TCP_SAEC (in module pathspider.chains.tcp)

 	TCP_SEC (in module pathspider.chains.tcp)

 	TCP_SYN (in module pathspider.chains.tcp)

 	
 	TCP_URG (in module pathspider.chains.tcp)

 	TCPChain (class in pathspider.chains.tcp)

 	terminate() (pathspider.base.Spider method)

 	TFOChain (class in pathspider.chains.tfo)

 	time (pathspider.observer.PacketClockTimer attribute)

 	TO_EOL (in module pathspider.chains.tcp)

 	TO_EXID_FASTOPEN (in module pathspider.chains.tcp)

 	TO_EXPA (in module pathspider.chains.tcp)

 	TO_EXPB (in module pathspider.chains.tcp)

 	TO_FASTOPEN (in module pathspider.chains.tcp)

 	TO_MPTCP (in module pathspider.chains.tcp)

 	TO_MSS (in module pathspider.chains.tcp)

 	TO_NOP (in module pathspider.chains.tcp)

 	TO_SACK (in module pathspider.chains.tcp)

 	TO_SACKOK (in module pathspider.chains.tcp)

 	TO_TS (in module pathspider.chains.tcp)

 	TO_WS (in module pathspider.chains.tcp)

U

 	
 	udp() (pathspider.chains.dns.DNSChain method)

 	(pathspider.chains.udp.UDPChain method)

 	
 	UDPChain (class in pathspider.chains.udp)

W

 	
 	worker() (pathspider.base.Spider method)

 	(pathspider.desync.DesynchronizedSpider method)

 	(pathspider.sync.SynchronizedSpider method)

 _static/mami-bauhaus.png
mami’

_static/minus.png

_static/file.png

_static/pathspider_arch.png
sysctl

test traffic

configurator

isync
1
P— —

workers

target
queue

target
v

info

merger

traffic

—

info

observer

output
data

_static/plus.png

_static/models.png
Is the feature available in the native stack?

Do you need to make multiple connections with differing configurations?

Do you need to switch a kernel option or other system wide configuation?

_static/pathspider.png
PATHspider

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 PATHspider 2.0

 		
 Introduction

 		
 Architecture

 		
 Extensibility

 		
 Installation

 		
 Debian GNU/Linux

 		
 Vagrant

 		
 Source

 		
 Command Line Usage Overview

 		
 Performing Active Measurement

 		
 Quickstart Example

 		
 Performing Passive Observation

 		
 Quickstart Example

 		
 Data Formats

 		
 Input Format

 		
 Output Format

 		
 Active Measurement Plugins

 		
 DSCP Plugin

 		
 Usage Example

 		
 Supported Connection Modes

 		
 Output Conditions

 		
 Notes

 		
 ECN Plugin

 		
 Usage Example

 		
 Supported Connection Modes

 		
 Output Conditions

 		
 Notes

 		
 Evil Bit Plugin

 		
 Usage Example

 		
 Supported Connection Modes

 		
 Output Conditions

 		
 Notes

 		
 H2 Plugin

 		
 Usage Example

 		
 Supported Connection Modes

 		
 Output Conditions

 		
 Notes

 		
 TCP Maximum Segment Size Plugin

 		
 Usage Example

 		
 Supported Connection Modes

 		
 Output Conditions

 		
 UDP Zero Checksum Plugin

 		
 Usage Example

 		
 Supported Connection Modes

 		
 Output Conditions

 		
 Notes

 		
 3rd-Party Plugins

 		
 Passive Observation

 		
 Basic Chain

 		
 DNS Chain

 		
 DSCP Chain

 		
 ECN Chain

 		
 Evil Bit Chain

 		
 ICMP Chain

 		
 TCP Maximum Segment Size Chain

 		
 TCP Chain

 		
 TCP Fast Open Chain

 		
 UDP Chain

 		
 Resolving Target Lists

 		
 Built-in DNS Resolver

 		
 Advanced DNS Resolver

 		
 Developing Plugins

 		
 Choosing a Plugin Model

 		
 SynchronizedSpider Model

 		
 DesynchronizedSpider Model

 		
 SingleSpider Model

 		
 ForgeSpider Model

 		
 Plugin Basics

 		
 Quickstart

 		
 Directory Layout

 		
 Running Your Plugin

 		
 Common Plugin Features

 		
 Plugin Metadata

 		
 Command Line Arguments

 		
 SynchronizedSpider Development

 		
 Connection Modes

 		
 Configuration Functions

 		
 DesynchronizedSpider Development

 		
 Connection Functions

 		
 SingleSpider Development

 		
 ForgeSpider Development

 		
 Plugin Metadata

 		
 Packet Forging

 		
 Flow Analysis Chains

 		
 Library Flow Analysis Chains

 		
 Writing Flow Analysis Chains

 		
 PATHspider Internals

 		
 Abstract Spider

 		
 pathspider.base

 		
 Desynchronized Spider

 		
 pathspider.desync

 		
 Forge Spider

 		
 pathspider.forge

 		
 Observer

 		
 Synchronized Spider

 		
 pathspider.sync

_static/up.png

_images/models.png
Is the feature available in the native stack?

Do you need to make multiple connections with differing configurations?

Do you need to switch a kernel option or other system wide configuation?

_images/pathspider_arch.png
sysctl

test traffic

configurator

isync
1
P— —

workers

target
queue

target
v

info

merger

traffic

—

info

observer

output
data

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

