

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	PATHspider 1.0.1 documentation

Welcome to PATHspider’s documentation!

In today’s Internet we see an increasing deployment of middleboxes. While
middleboxes provide in-network functionality that is necessary to keep networks
manageable and economically viable, any packet mangling — whether essential for
the needed functionality or accidental as an unwanted side effect — makes it
more and more difficult to deploy new protocols or extensions of existing
protocols.

For the evolution of the protocol stack, it is important to know which network
impairments exist and potentially need to be worked around. While classical
network measurement tools are often focused on absolute performance values,
PATHspider performs A/B testing between two different protocols or different
protocol extensions to perform controlled experiments of protocol-dependent
connectivity problems as well as differential treatment.

PATHspider is a framework for performing and analyzing these measurements,
while the actual A/B test can be easily customized. This documentation
describes the architecture of PATHspider, the plugins available and how to use
and develop the plugins.

Table of Contents

	Introduction
	Architecture

	Extensibility

	Installation
	Debian GNU/Linux

	Source

	Usage Overview
	Quickstart Example

	Data Formats

	Plugins
	DSCP Plugin

	ECN Plugin

	TFO Plugin

	3rd-Party Plugins

	Using the Resolver
	Basic Usage

	Example Usage

	Developing Plugins
	Quickstart

	Directory Layout

	Example Plugin

	Connection Logic

	Observer Functions

	Merging

	Running Your Plugin

	Advanced Topics
	PATHspider Internals

	PATHspider on Vagrant

	PATHspider on MONROE

Citing PATHspider

When presenting work that uses PATHspider, we would appreciate it if you could
cite PATHspider as:

Learmonth, I.R., Trammell, B., Kuhlewind, M. and Fairhurst, G., 2016, July.
PATHspider: A tool for active measurement of path transparency [https://mami-project.eu/wp-content/uploads/2015/10/anrw16-final13.pdf].
In Proceedings of the 2016 Applied Networking Research Workshop (pp. 62-64).
ACM.

Acknowledgements

Current development of PATHspider is supported by the European Union’s Horizon
2020 project MAMI. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 688421.
The opinions expressed and arguments employed reflect only the authors’ view.
The European Commission is not responsible for any use that may be made of that
information.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

Introduction

Network operators increasingly rely on in-network functionality to make their
networks manageable and economically viable. These middleboxes make the
end-to-end path for traffic more opaque by making assumptions about the traffic
passing through them. This has led to an ossification of the Internet protocol
stack: new protocols and extensions can be difficult to deploy when middleboxes
do not understand them [Honda11]. PATHspider is a software measurement tool
for active measurement of Internet path transparency to transport protocols and
transport protocol extensions, that can generate raw data at scale to determine
the size and shape of this problem.

The A/B testing measurement methodology used by PATHspider is simple: We
perform connections from a set of observation points to a set of measurement
targets using two configurations. A baseline configuration (A), usually a TCP
connection using kernel default and no extensions, tests basic connectivity.
These connections are compared to the experimental configuration (B), which
uses a different transport protocol or set of TCP extensions. These connections
are made as simultaneously as possible, to reduce the impact of transient
network changes.

PATHspider is a generalized version of the
ecnspider [https://github.com/britram/pathtools/tree/master/pathspider/ecnspider2]
tool, used in previous studies to probe the paths from multiple vantage points
to web-servers [Trammell15] and to peer-to-peer clients [Gubser15] for
failures negotiating Explicit Congestion Notification (ECN) [RFC3186] in
TCP.

As a generalized tool for controlled experimental A/B testing of path
impairment, PATHspider fills a gap in the existing Internet active
measurement software ecosystem. Existing active measurement platforms, such
as RIPE Atlas [RIPEAtlas], OONI [Filasto12], or
Netalyzr [Kreibich10], were built to measure absolute performance and
connectivity between a pair of endpoints under certain conditions. The results
obtainable from each of these can of course be compared to each other to
simulate A/B testing. However, the measurement data obtained from these
platforms provide a less controlled view than can be achieved with
PATHspider, given coarser scheduling of measurements in each state.

Given PATHspider’s modular design and implementation in Python, plugins to
perform measurements for any transport protocol or extension are easy to
build and can take advantage of the rich Python library ecosystem, including
high-level application libraries, low-level socket interfaces, and packet
forging tools such as Scapy [http://www.secdev.org/projects/scapy/].

Architecture

The PATHspider architecture has four components, illustrated in
the diagram below the configurator, the workers, the observer and the merger. Each component is implemented as one or more
threads, launched when PATHspider starts.

[image: Overview of PATHspider architecture]
An overview of the PATHspider architecture

For each target hostname and/or address, with port numbers where appropriate,
PATHspider enqueues a job, to be distributed amongst the worker threads when
available. Each worker performs one connection with the “A” configuration
and one connection with the “B” configuration. The “A” configuration will
always be connected first and serves as the base line measurement, followed by
the “B” configuration. This allows detection of hosts that do not respond
rather than failing as a result of using a particular transport protocol or
extension. These sockets remain open for a post-connection operation.

Some transport options require a system-wide parameter change, for example
enabling ECN in the Linux kernel. This requires locking and synchronisation.
Using semaphores, the configurator waits for each worker to complete an
operation and then changes the state to perform the next batch of operations.
This process cycles continually until no more jobs remain. In a typical
experiment, multiple workers (on the order of hundreds) are active, since much
of the time in a connection test is spent waiting for an answer from the
target or a timeout to fire.

In addition, packets are separately captured for analysis by the observer using
Python bindings for libtrace [https://www.cs.auckland.ac.nz/~nevil/python-libtrace/]. First, the observer
assigns each incoming packet to a flow based on the source and destination
addresses, as well as the TCP, UDP or SCTP ports when available. The packet and
its associated flow are then passed to a function chain. The functions in this
chain may be simple functions, such as counting the number of packets or octets
seen for a flow, or more complex functions, such as recording the state of
flags within packets and analysis based on previously observed packets in the
flow. For example, a function may record both an ECN negotiation attempt and
whether the host successfully negotiated use of ECN.

A function may alert the observer that a flow should have completed and that
the flow information can be matched with the corresponding job record and
passed to the merger. The merger extracts the fields needed for a particular
measurement campaign from the records produced by the worker and the observer.

Extensibility

PATHspider plugins are built by extending an abstract class that
implements the core behaviour, with functions for the
configurator, workers, observer, and matcher.

There are two configurator functions: config_zero and config_one,
run by the configurator to prepare for each attempted connection mode. Where
system-wide configuration is not required, the configurator provides the
semaphore-based locking functions. This makes the workers aware of the current
configuration allowing the connection functions to change based on the current
configuration mode.

There are three connection functions: pre_connect, connect and
post_connect. connect is the only required function. The call to
this function is synchronised by the configurator. The pre_connect and
post_connect functions can preconfigure state and perform actions with
the connections opened by the connect function without being synchronised
by the configurator. This can help to speed-up release of the semaphores and
complete jobs more efficiently. These actions can also perform data gathering
functions, for example, a traceroute to the host being tested.

Plugins can implement arbitrary functions for the observer function chain.
These track the state of flows and build flow records for different packet
classes: The first chain handles setup on the first packet of a new flow.
Separate chains chains for IP, TCP and UDP packets to allow different
behaviours based on the IP version and transport protocol.

The final plugin function is the merger function. This takes
a job record from a worker and a flow record from the observer and merges the
records before passing the merged record back to PATHspider.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

Installation

Debian GNU/Linux

PATHspider is packaged for Debian and packages are made available for the
testing and stable-backports distributions. If you are running Debian stable,
ensure that you have enabled the stable-backports repository [https://backports.debian.org/Instructions/] in your apt sources.

To install PATHspider, simply run:

sudo apt install pathspider

Source

If you are working from the source distribution (e.g. cloned git repository)
then you will need to install the required dependencies. On Debian GNU/Linux,
assuming you have the stable-backports repository enabled if you are running
stable:

sudo apt build-dep pathspider

Note

This will install both the runtime and the build dependencies required
for PATHspider, its testsuite and its documentation.

On other platforms, you may install the dependencies required via pip:

pip install -r requirements.txt

If you wish to build the documentation from source or to use the testsuite, and
you are installing your dependencies via pip, you will also need the following
dependencies:

pip install -r requirements_dev.txt

With the dependencies installed, you can install PATHspider with:

python3 setup.py install

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

Usage Overview

You can run PATHspider from the command line. In order for the Observer to
work, you will need permissions to capture raw packets from the network
interface. This will require you to use sudo or equivalent in order to
run PATHspider.

pathspider --help
usage: pathspider [-h] [-s] [-i INTERFACE] [-w WORKERS] [--input INPUTFILE]
 [--output OUTPUTFILE] [-v]
 PLUGIN ...

Pathspider will spider the paths.

optional arguments:
 -h, --help show this help message and exit
 -s, --standalone run in standalone mode. this is the default mode (and
 currently the only supported mode). in the future,
 mplane will be supported as a mode of operation.
 -i INTERFACE, --interface INTERFACE
 the interface to use for the observer
 -w WORKERS, --workers WORKERS
 number of workers to use
 --input INPUTFILE a file containing a list of remote hosts to test, with
 any accompanying metadata expected by the pathspider
 test. this file should be formatted as a comma-
 seperated values file. Defaults to standard input.
 --output OUTPUTFILE the file to output results data to. Defaults to
 standard output.
 -v, --verbose log debug-level output.

Plugins:
 The following plugins are available for use:

 dscp DiffServ Codepoints
 tls Transport Layer Security
 tfo TCP Fast Open
 ecn Explicit Congestion Notification
 dnsresolv DNS resolution for hostnames to IPv4 and v6 addresses

Spider safely!

Quickstart Example

You can run a small study using the ECN plugin and the included
webinput.csv file to measure path transparency to ECN for a small selection
of web servers and save the results in results.txt:

pathspider -i eth0 ecn </usr/share/doc/pathspider/examples/webinput.csv >results.txt

Note

If you’ve not installed PATHspider from apt, you will find the webinput.csv
example script in the examples folder of the source distribution.

Data Formats

PATHspider uses newline delimited JSON [http://ndjson.org/] (ndjson) for the
output format. At present, the input format is CSV although in future versions
we will deprecate the CSV input format and use a ndjson format input to unify
the data formats. The ndjson format gives flexibility in the actual contents of
the data as different tests may require data to remain associated with jobs,
for example the Alexa ranking of a webserver, so that it can be present in the
final output, or in some cases the data may be used as part of the test, for
example when running tests against authoritative DNS servers and needing to
know a domain for which the server should be authoritative.

Job List

The standalone runner expects a CSV file as input, with one line per job. The
format for each line should be as follows:

target_ip,target_port,target_hostname,target_rank

The current input format is optimised for the use case of using the Alexa top
1 million webservers and so includes a value for the ranking in that list for
the job. This value is opaque to PATHspider and may be set to any string
desirable, or to 0 if this is not required.

If the target_port is not a valid integer, the job will be skipped and a
warning emitted by the logger. Blank lines are permitted and will be ignored by
the job feeder.

Output Format

PATHspider’s output is in the form of two records per job, as JSON dicts. One
record will be for the baseline (A) connection, and one for the experimental
(B) connection. These JSON records contain the original job information, any
information added by the connection functions and any information added by the
Observer.

The connection logic of all the plugins that ship with the PATHspider
distribution will set a config value, either 0 or 1 (with 0 being baseline,
1 being experimental) to distinguish flows. Due to the highly parallel nature
of PATHspider, the two flows for a particular job may not be output together
and may have other flows between them. Any analysis tools will need to take
this into consideration.

The plugins that ship with the PATHspider distribution will also have the
following values set in their output:

	Key
	Description

	config
	0 for baseline, 1 for experimental

	connstate
	True if the connection was successful, False if the connection
failed (e.g. due to timeout).

	dip
	Layer 3 (IPv4/IPv6) source address

	sp
	Layer 4 (TCP/UDP) source port

	dp
	Layer 4 (TCP/UDP) destination port

	pkt_fwd
	A count of the number of packets seen in the forward direction

	pkt_rev
	A count of the number of packets seen in the reverse direction

	oct_fwd
	A count of the number of octets seen in the forward direction

	oct_rev
	A count of the number of octets seen in the reverse direction

For detail on the values in individual plugins, see the section for that plugin
later in this documentation.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

Plugins

A number of plugins ship with the PATHspider distribution. You can find
documentation for them here:

	DSCP Plugin

	ECN Plugin

	TFO Plugin

3rd-Party Plugins

You will be able to list the 3rd-party plugins installed by running:

pathspider --help

There is no need to register 3rd-party plugins with PATHspider before use, they
will be automatically detected once they are installed.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

 	Plugins

DSCP Plugin

Differentiated services or DiffServ [RFC2474] is a networking architecture
that specifies a simple, scalable and coarse-grained mechanism for classifying
and managing network traffic and providing quality of service (QoS) on modern
IP networks. DiffServ can, for example, be used to provide low-latency to
critical network traffic such as voice or streaming media while providing
simple best-effort service to non-critical services such as web traffic or file
transfers.

DiffServ uses a 6-bit differentiated services code point (DSCP) in the 8-bit
differentiated services field (DS field) in the IP header for packet
classification purposes. The DS field and ECN field replace the outdated IPv4
TOS field. [RFC3260]

The DSCP plugin for PATHspider aims to detect breakage in the Internet due to
the use of a non-zero DSCP codepoint.

Usage Example

To use the DSCP plugin, specify dscp as the plugin to use on the command-line:

pathspider dscp </usr/share/doc/pathspider/examples/webtest.csv >results.txt

This will run two TCP connections for each job input, one with the DSCP set to
zero (best-effort) and one with the DSCP set to 46 (expedited forwarding). If
you would like to specify the code point for use on the experimental flow, you
may do this with the --codepoint option. For example, to use 42:

pathspider dscp --codepoint 42 </usr/share/doc/pathspider/examples/webtest.csv >results.txt

Output Fields

In addition to the default output fields, the DSCP
plugin also provides the following fields for each flow:

	Key
	Description

	fwd_syn_dscp
	DiffServ code point as observed on the forward path for the
first SYN in the flow.

	rev_syn_dscp
	DiffServ code point as observed on the reverse path for the
first SYN in the flow (likely to be a SYN/ACK).

	fwd_data_dscp
	DiffServ code point as observed on the forward path for the
first data packet (i.e. with a payload) in the flow.

	rev_data_dscp
	DiffServ code point as observed on the reverse path for the
first data packet (i.e. with a payload) in the flow.

Notes

	DSCP marking is performed using the mangle table in iptables.
The config_zero function will flush this table. PATHspider makes no
guarantees the the configuration state is consistent once it has been set,
though you can use the forward path markings in the output to validate the
results within a reasonably high level of certainty that everything
behaved correctly.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

 	Plugins

ECN Plugin

Explicit Congestion Notification (ECN) is an extension to the Internet Protocol
and to the Transmission Control Protocol. [RFC3186] ECN allows end-to-end
notification of network congestion without dropping packets. ECN is an
optional feature that may be used between two ECN-enabled endpoints when the
underlying network infrastructure also supports it.

Conventionally, TCP/IP networks signal congestion by dropping packets. When ECN
is successfully negotiated, an ECN-aware router may set a mark in the IP header
instead of dropping a packet in order to signal impending congestion. The
receiver of the packet echoes the congestion indication to the sender, which
reduces its transmission rate as if it detected a dropped packet.

Rather than responding properly or ignoring the bits, some outdated or faulty
network equipment has historically dropped or mangled packets that have ECN
bits set. As of 2015, measurements suggested that the fraction of web servers
on the public Internet for which setting ECN prevents network connections had
been reduced to less than 1%. [Trammell15]

The ECN plugin for PATHspider aims to detect breakage in the Internet due to
the use of ECN.

Usage Example

To use the ECN plugin, specify ecn as the plugin to use on the command-line:

pathspider ecn </usr/share/doc/pathspider/examples/webtest.csv >results.txt

This will run two TCP connections for each job input, one with ECN disabled in
the kernel TCP/IP stack and one with ECN enabled in the kernel TCP/IP stack.

Output Fields

In addition to the default output fields, the ECN
plugin also provides the following fields for each flow:

	Key
	Description

	fwd_ez
	ECT(0) was observed in the forward direction.

	rev_ez
	ECT(0) was observed in the reverse direction.

	fwd_eo
	ECT(1) was observed in the forward direction.

	rev_eo
	ECT(1) was observed in the reverse direction.

	fwd_ce
	CE was observed in the forward direction.

	rev_ce
	CE was observed in the reverse direction.

	fwd_syn_flags
	The SYN flags observed in the forward direction.

	rev_syn_flags
	The SYN flags observed in the reverse direction.

	fwd_fin
	A FIN flag was observed in the forward direction.

	rev_fin
	A FIN flag was observed in the reverse direction.

	fwd_rst
	A RST flag was observed in the forward direction.

	rev_rst
	A RST flag was observed in the reverse direction.

	tcp_completed
	A complete 3WHS for TCP was observed to be successful.

Notes

	ECN behaviour is implemented by the host kernel for PATHspider, and is
switched by a sysctl call. PATHspider makes no guarantees the the
configuration state is consistent once it has been set, though you can use
the forward SYN flags in the output to validate the results within a
reasonably high level of certainty that everything behaved correctly.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

 	Plugins

TFO Plugin

TCP Fast Open (TFO) is an extension to speed up the opening of successive
Transmission Control Protocol (TCP) connections between two endpoints. It works
by using a TFO cookie (a TCP option), which is a cryptographic cookie stored on
the client and set upon the initial connection with the server. [RFC7413]

When the client later reconnects, it sends the initial SYN packet along with
the TFO cookie data to authenticate itself. If successful, the server may start
sending data to the client even before the reception of the final ACK packet of
the three-way handshake, skipping that way a round-trip delay and lowering the
latency in the start of data transmission.

The TFO plugin for PATHspider aims to detect connectivity breakage due to the
the use of TCP Fast Open, implementation of TCP Fast Open, and TFO
implementation anomalies.

Usage Example

To use the TFO plugin, specify tfo as the plugin to use on the command-line:

pathspider tfo </usr/share/doc/pathspider/examples/webtest.csv >results.txt

For the baseline test, the plugin will perform a TCP connection to the target
host. For the experimental case, the plugin will perform two TCP connections to
the target host. The first experimental connection is run to acquire a TFO
cookie and the second to check that it can be used.

Output Fields

In addition to the default output fields, the TFO
plugin also provides the following fields for each flow:

	Key
	Description

	tfo_synkind
	TCP Option Kind of TFO option on SYN (34, 254; 0 = none)

	tfo_ackkind
	TCP Option Kind of TFO option on SYN/ACK (34, 254; 0 = none)

	tfo_synclen
	TFO Cookie Length on SYN

	tfo_ackclen
	TFO Cookie Length on SYN/ACK

	tfo_seq
	Sequence number of SYN

	tfo_dlen
	Length of TCP payload on SYN

	tfo_ack
	Ack number of SYN/ACK. For ACKed data, = seq + dlen + 1

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

Using the Resolver

The resolver accepts input formatted as CSV in the style of the Alexa top 1 million website listing:

rank,domain

The output format is the native input format for PATHspider plugins.

Basic Usage

usage: pathspider dnsresolv [-h] [--timeout TIMEOUT] [--sleep SLEEP]
 [--add-port ADD_PORT]
 [--www {never,preferred,always,both}]
 [--debug-skip DEBUG_SKIP]
 [--debug-count DEBUG_COUNT]

optional arguments:
 -h, --help show this help message and exit
 --timeout TIMEOUT, -t TIMEOUT
 Timeout for DNS resolution.
 --sleep SLEEP, -s SLEEP
 Sleep before every request. Useful for rate-limiting.
 --add-port ADD_PORT, -p ADD_PORT
 If specified, this port number will be added to
 everyline in the output file.
 --www {never,preferred,always,both}
 Mode for prepending "www." to every domain before
 resolution. "never" will never prepend "www.".
 "preferred" will prepend "www." if the resolution of
 the domain including "www." is successful (more
 specifically: an A record is returned), and otherwise
 fall back to omitting the "www.". "always" will
 prepend "www." and will return no IP address in the
 output file, even when the domain without "www." can
 be resolved to one. "both" behaves as "always" and
 "never" together, that is, it resolves each domain
 with and without a prepended "www.". All values for
 this option will never stack the www's, that is
 "www.example.com" will never be expanded to
 "www.www.example.com". An existing "www." prefix from
 a domain from the input file will never be dropped. If
 this value is not "never", then the output file may
 contain different FQDNs from the input file, as
 "example.com" might be turned into "www.example.com".
 --debug-skip DEBUG_SKIP
 Skip the first N domains, and do not resolve them.
 --debug-count DEBUG_COUNT
 Perform resolution for at most N domains. All of them
 if this value is set to 0.

Example Usage

pathspider dnsresolv <alexa-1m.csv >input-list.txt

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

Developing Plugins

PATHspider is written to be extensible and the plugins that are included in the
PATHspider distribution are examples of the measurements that PATHspider can
perform.

pathspider.plugins is a namespace package. Namespace packages are a
mechanism for splitting a single Python package across multiple directories on
disk. One or more distributions may provide modules which exist inside the same
namespace package. The PATHspider distribution’s plugins are installed in
pathspider.plugins, but also 3rd-party plugins can exist in this path
without being a part of the PATHspider distribution.

Quickstart

The directory layout and example plugin below can be found in the
pathspider-example GitHub repository [https://github.com/mami-project/pathspider-example/]. You can get going
quickly by forking this repository and using that as a basis for plugin
development.

Directory Layout

To get started you will need to create the required directory layout for
PATHspider plugins, in this case for the Example plugin:

pathspider-example
└── pathspider
 ├── __init__.py
 └── plugins
 ├── __init__.py
 └── example.py

Inside both __init__.py files, you will need to add the following (and only
the following):

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

Your plugin will be written in example.py and this plugin will be
discovered automatically when you run PATHspider.

Example Plugin

The following code can be found in the quickstart example as a starting point
for developing your plugin. If you are not using the quickstart example, you
may copy and paste this code into a Python file under pathspider/plugins/
in the directory structure. This example is explained in the following
sections.

import sys
import collections
import logging

from pathspider.base import SynchronizedSpider
from pathspider.base import PluggableSpider
from pathspider.base import Conn
from pathspider.base import NO_FLOW

from pathspider.observer import simple_observer

SpiderRecord = collections.namedtuple("SpiderRecord",
 ["ip", "rport", "port", "rank", "host", "config",
 "connstate", "tstart", "tstop"])

class Example(SynchronizedSpider, PluggableSpider):
 """
 An example PATHspider plugin.
 """

 def config_zero(self):
 logger = logging.getLogger("example")
 logger.debug("Configuration zero")

 def config_one(self):
 logger = logging.getLogger("example")
 logger.debug("Configuration one")

 def connect(self, job, pcs, config):
 return self.tcp_connect(job)

 def post_connect(self, job, conn, pcs, config):
 job_ip, job_port, job_host, job_rank = job
 tstop = str(datetime.utcnow())

 if conn.state == Conn.OK:
 rec = SpiderRecord(job_ip, job_port, conn.port, job_rank, job_host,
 config, True, conn.tstart, tstop)
 else:
 rec = SpiderRecord(job_ip, job_port, conn.port, job_rank, job_host,
 config, False, conn.tstart, tstop)

 try:
 conn.client.shutdown(socket.SHUT_RDWR)
 except:
 pass

 try:
 conn.client.close()
 except:
 pass

 return rec

 def create_observer(self):
 logger = logging.getLogger("example")
 try:
 return simple_observer()
 except:
 logger.error("Observer would not start")
 sys.exit(-1)

 def merge(self, flow, res):
 if flow == NO_FLOW:
 flow = {"dip": res.ip,
 "sp": res.port,
 "dp": res.rport,
 "observed": False}
 else:
 flow['observed'] = True

 self.outqueue.put(flow)

 @staticmethod
 def register_args(subparsers):
 parser = subparsers.add_parser('example', help="Example starting point for development")
 parser.set_defaults(spider=Example)

You will need to provide implementations for each of these functions, which
are explained next. We’ll start with the connection logic.

Connection Logic

Configurator

These functions perform global changes that may be required between performing
the baseline (A) and the experimental (B) configurations. The changes may
be a call to sysctl, changes via netfilter or a call to a robot arm to
reposition the satellite array. In the event that global state changes are
not required, these can be implemented as no-ops.

An example implementation of these methods can be found in the ECN plugin:

	
ECN.config_zero()[source]

	Disables ECN negotiation via sysctl.

	
ECN.config_one()[source]

	Enables ECN negotiation via sysctl.

(Pre-,Post-) Connection

The pre-connection function will run only once, and the result of the
pre-connection operation will be available to both runs of the connection and
post-connection functions.

If you require to pass different values depending on the configuration, you can
perform two operations in the pre-connect function, returning a tuple, and
selecting the value to use based on the configuration in the later functions.

An example implementation of these methods can be found in the ECN plugin:

	
ECN.connect(job, pcs, config)[source]

	Performs a TCP connection.

	
ECN.post_connect(job, conn, pcs, config)[source]

	Close the socket gracefully.

Observer Functions

PATHspider’s observer will accept functions and pass python-libtrace [https://www.cs.auckland.ac.nz/~nevil/python-libtrace/] dissected packets
along with the associated flow record to them for every packet recieved.

The pathspider.observer module provides
pathspider.observer.simple_observer() which allows the creation of a very
simple Observer during development of the other portions of the plugin. There
are two simple examples of observer functions that are used in the observer
created by this function.

When you are ready to start working with your own Observer functions, you will
need to expand your create_observer() function. You can use the following
example:

from pathspider.observer import Observer
from pathspider.observer import basic_flow
from pathspider.observer import basic_count

class Example(SynchronizedSpider, PluggableSpider):

 [...]

 def create_observer(self):
 logger = logging.getLogger("example")
 try:
 return Observer(self.libtrace_uri,
 new_flow_chain=[basic_flow],
 ip4_chain=[basic_count],
 ip6_chain=[basic_count])
 except:
 logger.error("Observer would not start")
 sys.exit(-1)

Depending on the types of analysis you would like to do on the packets, you
should pass your functions to the appropriate chain:

	Function Chain
	Description

	new_flow_chain
	Functions to initialise fields in the flow
record for new flows.

	ip4_chain
	Functions to record details from IPv4 headers.

	ip6_chain
	Functions to record details from IPv6 headers.

	tcp_chain
	Functions to record details from TCP headers.

	udp_chain
	Functions to record details from UDP headers.

	l4_chain
	Functions to record details from other layer
4 headers.

Library Observer Functions

The pathspider.observer.basic_flow() function simply creates the inital
state for the flow record, extracting the 5-tuple and initialising counters.
The counters are used by the pathspider.observer.basic_count() function
that counts the number of packets and octets seen in each direction. These
combined will allow your plugin to produce the default output fields.

PATHspider also provides library observer functions for some protocols:

	pathspider.observer.icmp

	pathspider.observer.tcp

Writing Observer Functions

When you are ready to write functions for the observer, first identify which
data should be stored in the flow record. This is a dict that is made
available for every call to an observer function for a particular flow and
not shared across flows. Once the flow is completed, this is the record that
will be returned to the merger.

The flow record should be initialised when a new flow has been identified. The
functions in the new_flow_chain are called, in sequence, when a new flow
is identified by the Observer. These functions are passed two arguments:
rec - the empty flow record, and ip - the IP header.

You should familiarise yourself with the python-libtrace documentation [https://www.cs.auckland.ac.nz/~nevil/python-libtrace/]. The analysis
functions all follow the same function prototype with rec - the empty flow
record, x - the header, and rev - boolean value indicating the
direction the packet travelled (i.e. Was the packet in the reverse direction?).

The only difference in these functions is the header that is passed, as a
python-libtrace object, to the function. The same flow record is always passed
for each call for the same flow, regardless of which function chain the
function is in.

If a function returns False, as it has identified the end of the flow, the
Observer will consider the flow to be finished and will pass it to be merged
with the job record after a short delay. This might occur for TCP flows when
both FIN packets have been seen using the
pathspider.observer.tcp.tcp_complete() function.

Merging

The merge function will be called for every job and given the job record and
the observer record. The merge function is then to return the final record
to be recorded in the dataset for the measurement run.

Warning

It is possible for the Observer to return a NO_FLOW object in
some circumstances, where the flow has not been observed. Any
implementation must handle this gracefully.

An example implementation of this method can be found in the ECN plugin:

	
ECN.merge(flow, res)[source]

	Merge flow records.

Includes the configuration and connection success or failure of the
socket connection with the flow record.

Running Your Plugin

In order to run your plugin, in the root of your plugin source tree run:

PYTHONPATH=. pathspider example </usr/share/doc/pathspider/examples.csv >results.txt

Unless you install your plugin, you will need to add the plugin tree to the
PYTHONPATH to allow the plugin to be discovered.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

 	Developing Plugins

pathspider.observer.icmp

	
pathspider.observer.icmp.icmp_setup(rec, ip)[source]

	

	
pathspider.observer.icmp.icmp_unreachable(rec, ip, q, rev)[source]

	

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

 	Developing Plugins

pathspider.observer.tcp

	
pathspider.observer.tcp.tcp_complete(rec, tcp, rev)[source]

	

	
pathspider.observer.tcp.tcp_handshake(rec, tcp, rev)[source]

	

	
pathspider.observer.tcp.tcp_setup(rec, ip)[source]

	

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

Advanced Topics

PATHspider Internals

To learn more about the internals of PATHspider, you can read the following
pages describing the operation of individual parts of the architecture:

	Abstract Spider

	Observer

PATHspider on Vagrant

On systems other than Linux systems, you may use Vagrant to run PATHspider.
This may also be useful during development. A Vagrantfile is provided that
will create a Debian-based virtual machine with all the PATHspider dependencies
installed.

In the virtual machine, the PATHspider code will be mounted at
/home/vagrant/pathspider and changes made inside or outside the VM will appear
in both places. PATHspider is installed in development mode, meaning that
this is also the location of the PATHspider code that will be run when
running the /usr/bin/pathspider binary inside the virtual machine.

PATHspider on MONROE

PATHspider provides a Docker container that may be extended by experimenters
using the MONROE testbed [https://www.monroe-project.eu/]. You can read
more about how to use PATHspider on MONROE in the project’s README [https://github.com/mami-project/pathspider-monroe/blob/master/README.md].

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

 	Advanced Topics

Abstract Spider

The core functionality of PATHspider is implemented in two classes:
pathspider.base.SyncronisedSpider and
pathspider.base.DesynchronisedSpider. These both inherit from the base
pathspider.base.Spider which provides a skeleton that has the required
functions for any plugin. The documentation for this base class is below:

pathspider.base

Basic framework for Pathspider: coordinate active measurements on large target
lists with both system-level network stack state (sysctls, iptables rules, etc)
as well as information derived from flow-level passive observation of traffic at
the sender.

Derived and generalized from ECN Spider
(c) 2014 Damiano Boppart <hat.guy.repo@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

	
class pathspider.base.Conn[source]

	

	
class pathspider.base.Connection(client, port, state, tstart)

	
	
client

	Alias for field number 0

	
port

	Alias for field number 1

	
state

	Alias for field number 2

	
tstart

	Alias for field number 3

	
class pathspider.base.DesynchronizedSpider(worker_count, libtrace_uri, args)[source]

	
	
config_one()[source]

	

	
config_zero()[source]

	

	
configurator()[source]

	Since there is no need for a configurator thread in a
desynchronized spider, this thread is a no-op

	
worker(worker_number)[source]

	This function provides the logic for
configuration-synchronized worker threads.

	Parameters:	worker_number (int) – The unique number of the worker.

The workers operate as continuous loops:

	Fetch next job from the job queue

	Perform pre-connection operations

	Acquire a lock for “config_zero”

	Perform the “config_zero” connection

	Release “config_zero”

	Acquire a lock for “config_one”

	Perform the “config_one” connection

	Release “config_one”

	Perform post-connection operations for config_zero and pass the
result to the merger

	Perform post-connection operations for config_one and pass the
result to the merger

	Do it all again

If the job fetched is the SHUTDOWN_SENTINEL, then the worker will
terminate as this indicates that all the jobs have now been processed.

	
class pathspider.base.PluggableSpider[source]

	
	
static register_args(subparsers)[source]

	

	
class pathspider.base.SemaphoreN(value)[source]

	An extension to the standard library’s BoundedSemaphore that provides
functions to handle n tokens at once.

	
acquire_n(value=1, blocking=True, timeout=None)[source]

	Acquire value number of tokens at once.

The parameters blocking and timeout have the same semantics as
BoundedSemaphore.

	Returns:	The same value as the last call to BoundedSemaphore‘s

acquire() if acquire() were called value times instead
of the call to this method.

	
empty()[source]

	Acquire all tokens of the semaphore.

	
release_n(value=1)[source]

	Release value number of tokens at once.

	Returns:	The same value as the last call to BoundedSemaphore‘s

release() if release() were called value times instead
of the call to this method.

	
class pathspider.base.Spider(worker_count, libtrace_uri, args)[source]

	A spider consists of a configurator (which alternates between two system
configurations), a large number of workers (for performing some network
action for each configuration), an Observer which derives information from
passively observed traffic, and a thread that merges results from the
workers with flow records from the collector.

	
add_job(job)[source]

	Adds a job to the job queue.

If PATHspider is currently stopping, the job will not be added to the
queue.

	
config_one()[source]

	Changes the global state or system configuration for the
experimental measurements.

	
config_zero()[source]

	Changes the global state or system configuration for the
baseline measurements.

	
configurator()[source]

	

	
connect(job, pcs, config)[source]

	Performs the connection.

	Parameters:	
	job (dict) – The job record.

	pcs (dict) – The result of the pre-connection operations(s).

	config (int) – The current state of the configurator (0 or 1).

	Returns:	object – Any result of the connect operation to be passed
to pathspider.base.Spider.post_connect().

The connect function is used to perform the connection operation and
is run for both the A and B test. This method is not implemented in
the abstract pathspider.base.Spider class and must be
implemented by any plugin.

Sockets created during this operation can be returned by the function
for use in the post-connection phase, to minimise the time that the
configurator is blocked from moving to the next configuration.

	
create_observer()[source]

	Create a flow observer.

This function is called by the base Spider logic to get an instance
of pathspider.observer.Observer configured with the function
chains that are requried by the plugin.

This method is not implemented in the abstract
pathspider.base.Spider class and must be implemented by any
plugin.

For more information on how to use the flow observer, see
Observer.

	
exception_wrapper(target, *args, **kwargs)[source]

	

	
merge(flow, res)[source]

	Merge a job record with a flow record.

	Parameters:	
	flow (dict) – The flow record.

	res (dict) – The job record.

	Returns:	tuple – Final record for job.

In order to create a final record for reporting on a job, the final job
record must be merged with the flow record. This function should
be implemented by any plugin to provide the logic for this merge as
the keys used in these records cannot be known by PATHspider in advance.

This method is not implemented in the abstract
pathspider.base.Spider class and must be implemented by any
plugin.

	
merger()[source]

	Thread to merge results from the workers and the observer.

	
post_connect(job, conn, pcs, config)[source]

	Performs post-connection operations.

	Parameters:	
	job (dict) – The job record.

	conn (object) – The result of the connection operation(s).

	pcs (dict) – The result of the pre-connection operations(s).

	config (int) – The state of the configurator during
pathspider.base.Spider.connect().

	Returns:	dict – Result of the pre-connection operation(s).

The post_connect function can be used to perform any operations that
must be performed after each connection. It will be run for both the
A and the B configuration, and is not synchronised with the
configurator.

Plugins to PATHspider can optionally implement this function. If this
function is not overloaded, it will be a noop.

Any sockets or other file handles that were opened during
pathspider.base.Spider.connect() should be closed in this
function if they have not been already.

	
pre_connect(job)[source]

	Performs pre-connection operations.

	Parameters:	job (dict) – The job record.

	Returns:	dict – Result of the pre-connection operation(s).

The pre_connect function can be used to perform any operations that
must be performed before each connection. It will be run only once
per job, with the same result passed to both the A and B connect
calls. This function is not synchronised with the configurator.

Plugins to PATHspider can optionally implement this function. If this
function is not overloaded, it will be a noop.

	
shutdown()[source]

	Shut down PathSpider in an orderly fashion,
ensuring that all queued jobs complete,
and all available results are merged.

	
start()[source]

	This function starts a PATHspider plugin.

In order to run, the plugin must have first been activated by calling
its activate() method. This function causes the following to
happen:

	Set the running flag

	Create an pathspider.observer.Observer and start its
process

	Start the merger thread

	Start the configurator thread

	Start the worker threads

The number of worker threads to start was given when activating the
plugin.

	
terminate()[source]

	Shut down PathSpider as quickly as possible,
without any regard to completeness of results.

	
worker()[source]

	

	
class pathspider.base.SynchronizedSpider(worker_count, libtrace_uri, args)[source]

	
	
configurator()[source]

	Thread which synchronizes on a set of semaphores and alternates
between two system states.

	
tcp_connect(job)[source]

	This helper function will perform a TCP connection. It will not perform
any special action in the event that this is the experimental flow,
it only performs a TCP connection. This function expects that
self.conn_timeout has been set to a sensible value.

	
worker(worker_number)[source]

	This function provides the logic for
configuration-synchronized worker threads.

	Parameters:	worker_number (int) – The unique number of the worker.

The workers operate as continuous loops:

	Fetch next job from the job queue

	Perform pre-connection operations

	Acquire a lock for “config_zero”

	Perform the “config_zero” connection

	Release “config_zero”

	Acquire a lock for “config_one”

	Perform the “config_one” connection

	Release “config_one”

	Perform post-connection operations for config_zero and pass the
result to the merger

	Perform post-connection operations for config_one and pass the
result to the merger

	Do it all again

If the job fetched is the SHUTDOWN_SENTINEL, then the worker will
terminate as this indicates that all the jobs have now been processed.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PATHspider 1.0.1 documentation

 	Advanced Topics

Observer

	
class pathspider.observer.Observer(lturi, new_flow_chain=[], ip4_chain=[], ip6_chain=[], icmp4_chain=[], icmp6_chain=[], tcp_chain=[], udp_chain=[], l4_chain=[], idle_timeout=30, expiry_timeout=5)[source]

	Wraps a packet source identified by a libtrace URI,
parses packets to divide them into flows, passing these
packets and flows onto a function chain to allow
data to be associated with each flow.

	
__init__(lturi, new_flow_chain=[], ip4_chain=[], ip6_chain=[], icmp4_chain=[], icmp6_chain=[], tcp_chain=[], udp_chain=[], l4_chain=[], idle_timeout=30, expiry_timeout=5)[source]

	Create an Observer.

	Parameters:	
	new_flow_chain (array(function)) – Array of functions to initialise new flows.

	ip4_chain (array(function)) – Array of functions to pass IPv4 headers to.

	ip6_chain (array(function)) – Array of functions to pass IPv6 headers to.

	icmp4_chain (array(function)) – Array of functions to pass IPv4 headers containing
ICMPv4 headers to.

	icmp6_chain (array(function)) – Array of functions to pass IPv6 headers containing
ICMPv6 headers to.

	tcp_chain (array(function)) – Array of functions to pass TCP headers to.

	tcp_chain – Array of functions to pass TCP headers to.

	udp_chain (array(function)) – Array of functions to pass UDP headers to.

	l4_chain (array(function)) – Array of functions to pass other layer 4 headers to.

	See also:	Observer Documentation

	
flush()[source]

	

	
run_flow_enqueuer(flowqueue, irqueue=None)[source]

	

	
class pathspider.observer.PacketClockTimer(time, fn)

	
	
fn

	Alias for field number 1

	
time

	Alias for field number 0

	
pathspider.observer.basic_count(rec, ip, rev)[source]

	Packet function that counts packets and octets per flow

	
pathspider.observer.basic_flow(rec, ip)[source]

	New flow function that sets up basic flow information

	
pathspider.observer.extract_ports(ip)[source]

	

	
pathspider.observer.simple_observer(lturi)[source]

	

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	PATHspider 1.0.1 documentation

References

	[Honda11]	Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M. and Tokuda, H., 11, November. Is it still possible to extend TCP? [http://conferences.sigcomm.org/imc/2011/docs/p181.pdf]. In Proceedings of the 11 ACM SIGCOMM conference on Internet measurement conference (pp. 181-194). ACM.

	[Trammell15]	Trammell, B., Kühlewind, M., Boppart, D., Learmonth, I., Fairhurst, G. and Scheffenegger, R., 15, March. Enabling Internet-wide deployment of explicit congestion notification [http://ecn.ethz.ch/ecn-pam15.pdf]. In International Conference on Passive and Active Network Measurement (pp. 193-205). Springer International Publishing.

	[Gubser15]	Gubser, E., Measuring Explicit Congestion Negotiation (ECN) support based on P2P networks [http://www.tik.ee.ethz.ch/file/973ad8a64cf6599471c10df95e4ba93f/MT], 2015.

	[RFC2474]	Nichols, K., Blake, S., Baker, F. and Black, D., 1998. Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers [https://tools.ietf.org/html/rfc2474.html]. RFC Editor.

	[RFC3186]	Ramakrishnan, K., Floyd, S. and Black, D., 2001. The addition of explicit congestion notification (ECN) to IP [https://tools.ietf.org/html/rfc3186.html]. RFC Editor.

	[RFC3260]	Grossman, D., 2002. New terminology and clarifications for DiffServ [https://tools.ietf.org/html/rfc3260.html]. RFC Editor.

	[RFC7413]	Cheng, Y., Chu, J., Radhakrishnan, S. and Jain, A., 2014. TCP Fast Open [https://tools.ietf.org/html/rfc7413.html]. RFC Editor.

	[RIPEAtlas]	Ripe, N.C.C.. RIPE atlas [http://atlas.ripe.net].

	[Filasto12]	Filasto, A. and Appelbaum, J., 2012, August. OONI: Open Observatory of Network Interference [https://www.usenix.org/system/files/conference/foci12/foci12-final12.pdf]. In FOCI.

	[Kreibich10]	Kreibich, C., Weaver, N., Nechaev, B. and Paxson, V., 2010, November. Netalyzr: illuminating the edge network [http://dl.acm.org/citation.cfm?id=1879173]. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (pp. 246-259). ACM.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	PATHspider 1.0.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pathspider	

 	
 	
 pathspider.base	

 	
 	
 pathspider.observer	

 	
 	
 pathspider.observer.icmp	

 	
 	
 pathspider.observer.tcp	

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	PATHspider 1.0.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | W

_

 	

 	__init__() (pathspider.observer.Observer method)

A

 	

 	acquire_n() (pathspider.base.SemaphoreN method)

 	

 	add_job() (pathspider.base.Spider method)

B

 	

 	basic_count() (in module pathspider.observer)

 	

 	basic_flow() (in module pathspider.observer)

C

 	

 	client (pathspider.base.Connection attribute)

 	config_one() (pathspider.base.DesynchronizedSpider method)

 	

 	(pathspider.base.Spider method)

 	(pathspider.plugins.ecn.ECN method)

 	config_zero() (pathspider.base.DesynchronizedSpider method)

 	

 	(pathspider.base.Spider method)

 	(pathspider.plugins.ecn.ECN method)

 	configurator() (pathspider.base.DesynchronizedSpider method)

 	

 	(pathspider.base.Spider method)

 	(pathspider.base.SynchronizedSpider method)

 	

 	Conn (class in pathspider.base)

 	connect() (pathspider.base.Spider method)

 	

 	(pathspider.plugins.ecn.ECN method)

 	Connection (class in pathspider.base)

 	create_observer() (pathspider.base.Spider method)

D

 	

 	DesynchronizedSpider (class in pathspider.base)

E

 	

 	empty() (pathspider.base.SemaphoreN method)

 	exception_wrapper() (pathspider.base.Spider method)

 	

 	extract_ports() (in module pathspider.observer)

F

 	

 	flush() (pathspider.observer.Observer method)

 	

 	fn (pathspider.observer.PacketClockTimer attribute)

I

 	

 	icmp_setup() (in module pathspider.observer.icmp)

 	

 	icmp_unreachable() (in module pathspider.observer.icmp)

M

 	

 	merge() (pathspider.base.Spider method)

 	

 	(pathspider.plugins.ecn.ECN method)

 	

 	merger() (pathspider.base.Spider method)

O

 	

 	Observer (class in pathspider.observer)

P

 	

 	PacketClockTimer (class in pathspider.observer)

 	pathspider.base (module)

 	pathspider.observer (module)

 	pathspider.observer.icmp (module)

 	pathspider.observer.tcp (module)

 	

 	PluggableSpider (class in pathspider.base)

 	port (pathspider.base.Connection attribute)

 	post_connect() (pathspider.base.Spider method)

 	

 	(pathspider.plugins.ecn.ECN method)

 	pre_connect() (pathspider.base.Spider method)

R

 	

 	register_args() (pathspider.base.PluggableSpider static method)

 	release_n() (pathspider.base.SemaphoreN method)

 	

 	
 RFC

 	

 	RFC 2474

 	RFC 3186

 	RFC 3260

 	RFC 7413

 	run_flow_enqueuer() (pathspider.observer.Observer method)

S

 	

 	SemaphoreN (class in pathspider.base)

 	shutdown() (pathspider.base.Spider method)

 	simple_observer() (in module pathspider.observer)

 	Spider (class in pathspider.base)

 	

 	start() (pathspider.base.Spider method)

 	state (pathspider.base.Connection attribute)

 	SynchronizedSpider (class in pathspider.base)

T

 	

 	tcp_complete() (in module pathspider.observer.tcp)

 	tcp_connect() (pathspider.base.SynchronizedSpider method)

 	tcp_handshake() (in module pathspider.observer.tcp)

 	tcp_setup() (in module pathspider.observer.tcp)

 	

 	terminate() (pathspider.base.Spider method)

 	time (pathspider.observer.PacketClockTimer attribute)

 	tstart (pathspider.base.Connection attribute)

W

 	

 	worker() (pathspider.base.DesynchronizedSpider method)

 	

 	(pathspider.base.Spider method)

 	(pathspider.base.SynchronizedSpider method)

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 _static/mami-bauhaus.png
mami’

_modules/pathspider/base.html

 Navigation

 		
 index

 		
 modules |

 		PATHspider 1.0.1 documentation »

 		Module code »

 Source code for pathspider.base

"""
Basic framework for Pathspider: coordinate active measurements on large target
lists with both system-level network stack state (sysctls, iptables rules, etc)
as well as information derived from flow-level passive observation of traffic at
the sender.

.. moduleauthor:: Brian Trammell <brian@trammell.ch>

Derived and generalized from ECN Spider
(c) 2014 Damiano Boppart <hat.guy.repo@gmail.com>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

"""

import sys
import time
import logging
import socket
import collections
import threading
import multiprocessing as mp
import queue
from datetime import datetime
from enum import Enum

from ipaddress import ip_address

###
Utility Classes
###

[docs]class SemaphoreN(threading.BoundedSemaphore):
 """
 An extension to the standard library's BoundedSemaphore that provides
 functions to handle n tokens at once.
 """
 def __init__(self, value):
 self._value = value
 super().__init__(self._value)
 self.empty()

 def __str__(self):
 return 'SemaphoreN with a maximum value of {}.'.format(self._value)

[docs] def acquire_n(self, value=1, blocking=True, timeout=None):
 """
 Acquire ``value`` number of tokens at once.

 The parameters ``blocking`` and ``timeout`` have the same semantics as
 :class:`BoundedSemaphore`.

 :returns: The same value as the last call to `BoundedSemaphore`'s
 :meth:`acquire` if :meth:`acquire` were called ``value`` times instead
 of the call to this method.
 """
 ret = None
 for _ in range(value):
 ret = self.acquire(blocking=blocking, timeout=timeout)
 return ret

[docs] def release_n(self, value=1):
 """
 Release ``value`` number of tokens at once.

 :returns: The same value as the last call to `BoundedSemaphore`'s
 :meth:`release` if :meth:`release` were called ``value`` times instead
 of the call to this method.
 """
 ret = None
 for _ in range(value):
 ret = self.release()
 return ret

[docs] def empty(self):
 """
 Acquire all tokens of the semaphore.
 """
 while self.acquire(blocking=False):
 pass

[docs]class Conn(Enum):
 OK = 0
 FAILED = 1
 TIMEOUT = 2
 SKIPPED = 3

Connection = collections.namedtuple("Connection", ["client", "port", "state", "tstart"])

QUEUE_SIZE = 1000
QUEUE_SLEEP = 0.5

SHUTDOWN_SENTINEL = "SHUTDOWN_SENTINEL"
NO_RESULT = None
NO_FLOW = None

[docs]class Spider:
 """
 A spider consists of a configurator (which alternates between two system
 configurations), a large number of workers (for performing some network
 action for each configuration), an Observer which derives information from
 passively observed traffic, and a thread that merges results from the
 workers with flow records from the collector.

 """

 def __init__(self, worker_count, libtrace_uri, args):
 """
 The initialisation of a pathspider plugin.

 :param worker_count: The number of workers to use.
 :type worker_count: int
 :param libtrace_uri: The URI to pass to the Observer to describe the
 interface on which packets should be captured.
 :type libtrace_uri: str

 It is expected that this function will be overloaded by plugins, though
 the plugin should always make a call to the __init__() function of the
 abstract Spider class as this initialises all of the base functionality:

 .. code-block:: python

 super().__init__(worker_count=worker_count,
 libtrace_uri=libtrace_uri,
 args=args)

 This can be used to initialise any variables which may be required in
 the object.
 """

 self.args = args

 self.activated = True
 self.running = False
 self.stopping = False
 self.terminating = False

 self.worker_count = worker_count
 self.active_worker_count = 0
 self.active_worker_lock = threading.Lock()

 self.libtrace_uri = libtrace_uri

 self.jobqueue = queue.Queue(QUEUE_SIZE)
 self.resqueue = queue.Queue(QUEUE_SIZE)

 self.flowqueue = mp.Queue(QUEUE_SIZE)
 self.observer_shutdown_queue = mp.Queue(QUEUE_SIZE)

 self.restab = {}
 self.flowtab = {}
 self.flowreap = collections.deque()
 self.flowreap_size = min(self.worker_count * 100, 10000)

 self.outqueue = queue.Queue(QUEUE_SIZE)

 self.observer = None

 self.worker_threads = []
 self.configurator_thread = None
 self.merger_thread = None

 self.observer_process = None

 # self._worker_state = ["not_started"] * self.worker_count

 self.lock = threading.Lock()
 self.exception = None

 self.conn_timeout = None

[docs] def config_zero(self):
 """
 Changes the global state or system configuration for the
 baseline measurements.
 """

 raise NotImplementedError("Cannot instantiate an abstract Spider")

[docs] def config_one(self):
 """
 Changes the global state or system configuration for the
 experimental measurements.
 """

 raise NotImplementedError("Cannot instantiate an abstract Spider")

[docs] def configurator(self):
 raise NotImplementedError("Cannot instantiate an abstract Spider")

[docs] def worker(self):
 raise NotImplementedError("Cannot instantiate an abstract Spider")

[docs] def pre_connect(self, job):
 """
 Performs pre-connection operations.

 :param job: The job record.
 :type job: dict
 :returns: dict -- Result of the pre-connection operation(s).

 The pre_connect function can be used to perform any operations that
 must be performed before each connection. It will be run only once
 per job, with the same result passed to both the A and B connect
 calls. This function is not synchronised with the configurator.

 Plugins to PATHspider can optionally implement this function. If this
 function is not overloaded, it will be a noop.
 """

 pass

[docs] def connect(self, job, pcs, config):
 """
 Performs the connection.

 :param job: The job record.
 :type job: dict
 :param pcs: The result of the pre-connection operations(s).
 :type pcs: dict
 :param config: The current state of the configurator (0 or 1).
 :type config: int
 :returns: object -- Any result of the connect operation to be passed
 to :func:`pathspider.base.Spider.post_connect`.

 The connect function is used to perform the connection operation and
 is run for both the A and B test. This method is not implemented in
 the abstract :class:`pathspider.base.Spider` class and must be
 implemented by any plugin.

 Sockets created during this operation can be returned by the function
 for use in the post-connection phase, to minimise the time that the
 configurator is blocked from moving to the next configuration.
 """

 raise NotImplementedError("Cannot instantiate an abstract Pathspider")

[docs] def post_connect(self, job, conn, pcs, config):
 """
 Performs post-connection operations.

 :param job: The job record.
 :type job: dict
 :param conn: The result of the connection operation(s).
 :type conn: object
 :param pcs: The result of the pre-connection operations(s).
 :type pcs: dict
 :param config: The state of the configurator during
 :func:`pathspider.base.Spider.connect`.
 :type config: int
 :returns: dict -- Result of the pre-connection operation(s).

 The post_connect function can be used to perform any operations that
 must be performed after each connection. It will be run for both the
 A and the B configuration, and is not synchronised with the
 configurator.

 Plugins to PATHspider can optionally implement this function. If this
 function is not overloaded, it will be a noop.

 Any sockets or other file handles that were opened during
 :func:`pathspider.base.Spider.connect` should be closed in this
 function if they have not been already.
 """

 raise NotImplementedError("Cannot instantiate an abstract Pathspider")

[docs] def create_observer(self):
 """
 Create a flow observer.

 This function is called by the base Spider logic to get an instance
 of :class:`pathspider.observer.Observer` configured with the function
 chains that are requried by the plugin.

 This method is not implemented in the abstract
 :class:`pathspider.base.Spider` class and must be implemented by any
 plugin.

 For more information on how to use the flow observer, see
 :ref:`Observer <observer>`.
 """

 raise NotImplementedError("Cannot instantiate an abstract Pathspider")

[docs] def merger(self):
 """
 Thread to merge results from the workers and the observer.
 """

 logger = logging.getLogger('pathspider')
 merging_flows = True
 merging_results = True

 # merge_cycles = 0

 while self.running and (merging_results or merging_flows):

 # if merge_cycles % 20 == 0:
 # for wn in range(0, self.worker_count):
 # logger.debug("worker %3u: %s" % (wn, self._worker_state[wn]))
 # merge_cycles += 1

 if merging_flows and self.flowqueue.qsize() >= self.resqueue.qsize():
 try:
 flow = self.flowqueue.get_nowait()
 except queue.Empty:
 time.sleep(QUEUE_SLEEP)
 else:
 if flow == SHUTDOWN_SENTINEL:
 logger.debug("stopping flow merging on sentinel")
 merging_flows = False
 continue

 flowkey = (flow['dip'], flow['sp'])
 logger.debug("got a flow (" + str(flow['sip']) + ", " +
 str(flow['sp']) + ")")

 if flowkey in self.restab:
 logger.debug("merging flow")
 self.merge(flow, self.restab[flowkey])
 del self.restab[flowkey]
 elif flowkey in self.flowtab:
 logger.debug("won't merge duplicate flow")
 else:
 # Create a new flow
 self.flowtab[flowkey] = flow

 # And reap the oldest, if the reap queue is full
 self.flowreap.append(flowkey)
 if len(self.flowreap) > self.flowreap_size:
 try:
 del self.flowtab[self.flowreap.popleft()]
 except KeyError:
 pass

 elif merging_results:
 try:
 res = self.resqueue.get_nowait()
 except queue.Empty:
 time.sleep(QUEUE_SLEEP)
 logger.debug("result queue is empty")
 else:
 if res == NO_RESULT:
 # handle skipped results
 continue
 if res == SHUTDOWN_SENTINEL:
 merging_results = False
 logger.debug("stopping result merging on sentinel")
 continue

 reskey = (res.ip, res.port)
 logger.debug("got a result (" + str(res.ip) + ", " +
 str(res.port) + ")")

 if reskey in self.flowtab:
 logger.debug("merging result")
 self.merge(self.flowtab[reskey], res)
 del self.flowtab[reskey]
 elif reskey in self.restab:
 logger.debug("won't merge duplicate result")
 else:
 self.restab[reskey] = res

 self.resqueue.task_done()

 # Both shutdown markers received.
 # Call merge on all remaining entries in the results table
 # with null flows.
 # Commented out for now; see https://github.com/mami-project/pathspider/issues/29
 for res_item in self.restab.items():
 res = res_item[1]
 self.merge(NO_FLOW, res)

[docs] def merge(self, flow, res):
 """
 Merge a job record with a flow record.

 :param flow: The flow record.
 :type flow: dict
 :param res: The job record.
 :type res: dict
 :return: tuple -- Final record for job.

 In order to create a final record for reporting on a job, the final job
 record must be merged with the flow record. This function should
 be implemented by any plugin to provide the logic for this merge as
 the keys used in these records cannot be known by PATHspider in advance.

 This method is not implemented in the abstract
 :class:`pathspider.base.Spider` class and must be implemented by any
 plugin.
 """

 raise NotImplementedError("Cannot instantiate an abstract Pathspider")

[docs] def exception_wrapper(self, target, *args, **kwargs):
 try:
 target(*args, **kwargs)
 except:
 #FIXME: What exceptions do we expect?
 logger = logging.getLogger('pathspider')
 logger.exception("exception occurred. terminating.")
 if self.exception is None:
 self.exception = sys.exc_info()[1]

 self.terminate()

[docs] def start(self):
 """
 This function starts a PATHspider plugin.

 In order to run, the plugin must have first been activated by calling
 its :func:`activate` method. This function causes the following to
 happen:

 * Set the running flag
 * Create an :class:`pathspider.observer.Observer` and start its
 process
 * Start the merger thread
 * Start the configurator thread
 * Start the worker threads

 The number of worker threads to start was given when activating the
 plugin.
 """

 logger = logging.getLogger('pathspider')
 if self.activated == False:
 logger.exception("tried to run plugin without activating first")
 sys.exit(1)

 logger.info("starting pathspider")

 with self.lock:
 # set the running flag
 self.running = True

 # create an observer and start its process
 self.observer = self.create_observer()
 self.observer_process = mp.Process(
 args=(self.observer.run_flow_enqueuer,
 self.flowqueue,
 self.observer_shutdown_queue),
 target=self.exception_wrapper,
 name='observer',
 daemon=True)
 self.observer_process.start()
 logger.debug("observer forked")

 # now start up ecnspider, backwards
 self.merger_thread = threading.Thread(
 args=(self.merger,),
 target=self.exception_wrapper,
 name="merger",
 daemon=True)
 self.merger_thread.start()
 logger.debug("merger up")

 self.configurator_thread = threading.Thread(
 args=(self.configurator,),
 target=self.exception_wrapper,
 name="configurator",
 daemon=True)
 self.configurator_thread.start()
 logger.debug("configurator up")

 # threading.Thread(
 # target = self.worker_status_reporter,
 # name = "status_reporter",
 # daemon = True).start()
 # logger.debug("status reporter up")

 self.worker_threads = []
 with self.active_worker_lock:
 self.active_worker_count = self.worker_count
 for i in range(self.worker_count):
 worker_thread = threading.Thread(
 args=(self.worker, i),
 target=self.exception_wrapper,
 name='worker_{}'.format(i),
 daemon=True)
 self.worker_threads.append(worker_thread)
 worker_thread.start()
 logger.debug("workers up")

[docs] def shutdown(self):
 """
 Shut down PathSpider in an orderly fashion,
 ensuring that all queued jobs complete,
 and all available results are merged.

 """
 logger = logging.getLogger('pathspider')

 logger.info("beginning shutdown")

 with self.lock:
 # Set stopping flag
 self.stopping = True

 # Put a bunch of shutdown signals in the job queue
 for i in range(self.worker_count * 2):
 self.jobqueue.put(SHUTDOWN_SENTINEL)

 # Wait for worker threads to shut down
 for worker in self.worker_threads:
 if threading.current_thread() != worker:
 logger.debug("joining worker: " + repr(worker))
 worker.join()
 logger.debug("all workers joined")

 # Tell observer to shut down
 self.observer_shutdown_queue.put(True)
 self.observer_process.join()
 logger.debug("observer shutdown")

 # Tell merger to shut down
 self.resqueue.put(SHUTDOWN_SENTINEL)
 self.merger_thread.join()
 logger.debug("merger shutdown")

 # Wait for merged results to be written
 self.outqueue.join()
 logger.debug("all results retrieved")

 # Propagate shutdown sentinel and tell threads to stop
 self.outqueue.put(SHUTDOWN_SENTINEL)

 # Tell threads we've stopped
 self.running = False

 # Join configurator
 # if threading.current_thread() != self.configurator_thread:
 # self.configurator_thread.join()

 self.stopping = False

 logger.info("shutdown complete")

[docs] def terminate(self):
 """
 Shut down PathSpider as quickly as possible,
 without any regard to completeness of results.

 """
 logger = logging.getLogger('pathspider')
 logger.info("terminating pathspider")

 # tell threads to stop
 self.stopping = True
 self.running = False

 # terminate observer
 self.observer_shutdown_queue.put(True)

 # drain queues
 try:
 while True:
 self.jobqueue.task_done()
 except ValueError:
 pass

 try:
 while True:
 self.resqueue.task_done()
 except ValueError:
 pass

 try:
 while True:
 self.flowqueue.get_nowait()
 except queue.Empty:
 pass

 # Join remaining threads
 for worker in self.worker_threads:
 if threading.current_thread() != worker:
 logger.debug("joining worker: " + repr(worker))
 worker.join()
 logger.debug("all workers joined")

 if self.configurator_thread and \
 (threading.current_thread() != self.configurator_thread):
 self.configurator_thread.join()
 logger.debug("configurator joined")

 if threading.current_thread() != self.merger_thread:
 self.merger_thread.join()
 logger.debug("merger joined")

 self.observer_process.join()
 logger.debug("observer joined")

 self.outqueue.put(SHUTDOWN_SENTINEL)
 logger.info("termination complete")

[docs] def add_job(self, job):
 """
 Adds a job to the job queue.

 If PATHspider is currently stopping, the job will not be added to the
 queue.
 """

 if self.stopping:
 return

 self.jobqueue.put(job)

[docs]class SynchronizedSpider(Spider):

 def __init__(self, worker_count, libtrace_uri, args):
 super().__init__(worker_count, libtrace_uri, args)

 # create semaphores for synchronizing configurations
 self.sem_config_zero = SemaphoreN(worker_count)
 self.sem_config_zero.empty()
 self.sem_config_zero_rdy = SemaphoreN(worker_count)
 self.sem_config_zero_rdy.empty()
 self.sem_config_one = SemaphoreN(worker_count)
 self.sem_config_one.empty()
 self.sem_config_one_rdy = SemaphoreN(worker_count)
 self.sem_config_one_rdy.empty()

[docs] def configurator(self):
 """
 Thread which synchronizes on a set of semaphores and alternates
 between two system states.
 """
 logger = logging.getLogger('pathspider')

 while self.running:
 logger.debug("setting config zero")
 self.config_zero()
 logger.debug("config zero active")
 self.sem_config_zero.release_n(self.worker_count)
 self.sem_config_one_rdy.acquire_n(self.worker_count)
 logger.debug("setting config one")
 self.config_one()
 logger.debug("config one active")
 self.sem_config_one.release_n(self.worker_count)
 self.sem_config_zero_rdy.acquire_n(self.worker_count)

 # In case the master exits the run loop before all workers have,
 # these tokens will allow all workers to run through again,
 # until the next check at the start of the loop
 self.sem_config_zero.release_n(self.worker_count)
 self.sem_config_one.release_n(self.worker_count)

[docs] def worker(self, worker_number):
 """
 This function provides the logic for
 configuration-synchronized worker threads.

 :param worker_number: The unique number of the worker.
 :type worker_number: int

 The workers operate as continuous loops:

 * Fetch next job from the job queue
 * Perform pre-connection operations
 * Acquire a lock for "config_zero"
 * Perform the "config_zero" connection
 * Release "config_zero"
 * Acquire a lock for "config_one"
 * Perform the "config_one" connection
 * Release "config_one"
 * Perform post-connection operations for config_zero and pass the
 result to the merger
 * Perform post-connection operations for config_one and pass the
 result to the merger
 * Do it all again

 If the job fetched is the SHUTDOWN_SENTINEL, then the worker will
 terminate as this indicates that all the jobs have now been processed.
 """

 logger = logging.getLogger('pathspider')
 worker_active = True

 while self.running:
 if worker_active:
 try:
 job = self.jobqueue.get_nowait()

 # Break on shutdown sentinel
 if job == SHUTDOWN_SENTINEL:
 self.jobqueue.task_done()
 logger.debug("shutting down worker "+str(worker_number)+" on sentinel")
 # self._worker_state[worker_number] = "shutdown_sentinel"
 worker_active = False
 with self.active_worker_lock:
 self.active_worker_count -= 1
 logger.debug(str(self.active_worker_count)+" workers still active")
 continue

 logger.debug("got a job: "+repr(job))
 except queue.Empty:
 #logger.debug("no job available, sleeping")
 # spin the semaphores
 self.sem_config_zero.acquire()
 # self._worker_state[worker_number] = "sleep_0"
 time.sleep(QUEUE_SLEEP)
 self.sem_config_one_rdy.release()
 self.sem_config_one.acquire()
 # self._worker_state[worker_number] = "sleep_1"
 time.sleep(QUEUE_SLEEP)
 self.sem_config_zero_rdy.release()
 else:
 # Hook for preconnection
 # self._worker_state[worker_number] = "preconn"
 pcs = self.pre_connect(job)

 # Wait for configuration zero
 # self._worker_state[worker_number] = "wait_0"
 self.sem_config_zero.acquire()

 # Connect in configuration zero
 # self._worker_state[worker_number] = "conn_0"
 conn0 = self.connect(job, pcs, 0)

 # Wait for configuration one
 # self._worker_state[worker_number] = "wait_1"
 self.sem_config_one_rdy.release()
 self.sem_config_one.acquire()

 # Connect in configuration one
 # self._worker_state[worker_number] = "conn_1"
 conn1 = self.connect(job, pcs, 1)

 # Signal okay to go to configuration zero
 self.sem_config_zero_rdy.release()

 # Pass results on for merge
 # self._worker_state[worker_number] = "postconn_0"
 self.resqueue.put(self.post_connect(job, conn0, pcs, 0))
 # self._worker_state[worker_number] = "postconn_1"
 self.resqueue.put(self.post_connect(job, conn1, pcs, 1))

 # self._worker_state[worker_number] = "done"
 logger.debug("job complete: "+repr(job))
 self.jobqueue.task_done()
 else: # not worker_active, spin the semaphores
 self.sem_config_zero.acquire()
 # self._worker_state[worker_number] = "shutdown_0"
 time.sleep(QUEUE_SLEEP)
 with self.active_worker_lock:
 if self.active_worker_count <= 0:
 # self._worker_state[worker_number] = "shutdown_complete"
 break
 self.sem_config_one_rdy.release()
 self.sem_config_one.acquire()
 # self._worker_state[worker_number] = "shutdown_1"
 time.sleep(QUEUE_SLEEP)
 self.sem_config_zero_rdy.release()

[docs] def tcp_connect(self, job):
 """
 This helper function will perform a TCP connection. It will not perform
 any special action in the event that this is the experimental flow,
 it only performs a TCP connection. This function expects that
 self.conn_timeout has been set to a sensible value.
 """

 if self.conn_timeout is None:
 raise RuntimeError("Plugin did not set TCP connect timeout.")

 tstart = str(datetime.utcnow())

 if ":" in job[0]:
 sock = socket.socket(socket.AF_INET6)
 else:
 sock = socket.socket(socket.AF_INET)

 try:
 sock.settimeout(self.conn_timeout)
 sock.connect((job[0], job[1]))

 return Connection(sock, sock.getsockname()[1], Conn.OK, tstart)
 except TimeoutError:
 return Connection(sock, sock.getsockname()[1], Conn.TIMEOUT, tstart)
 except OSError:
 return Connection(sock, sock.getsockname()[1], Conn.FAILED, tstart)

[docs]class DesynchronizedSpider(Spider):

 def __init__(self, worker_count, libtrace_uri, args):
 super().__init__(worker_count, libtrace_uri, args)

[docs] def config_zero(self):
 pass

[docs] def config_one(self):
 pass

[docs] def configurator(self):
 """
 Since there is no need for a configurator thread in a
 desynchronized spider, this thread is a no-op
 """
 logger = logging.getLogger('pathspider')
 logger.info("configurations are not synchronized")

[docs] def worker(self, worker_number):
 """
 This function provides the logic for
 configuration-synchronized worker threads.

 :param worker_number: The unique number of the worker.
 :type worker_number: int

 The workers operate as continuous loops:

 * Fetch next job from the job queue
 * Perform pre-connection operations
 * Acquire a lock for "config_zero"
 * Perform the "config_zero" connection
 * Release "config_zero"
 * Acquire a lock for "config_one"
 * Perform the "config_one" connection
 * Release "config_one"
 * Perform post-connection operations for config_zero and pass the
 result to the merger
 * Perform post-connection operations for config_one and pass the
 result to the merger
 * Do it all again

 If the job fetched is the SHUTDOWN_SENTINEL, then the worker will
 terminate as this indicates that all the jobs have now been processed.
 """

 logger = logging.getLogger('pathspider')
 worker_active = True

 while self.running:
 if worker_active:
 try:
 job = self.jobqueue.get_nowait()

 # Break on shutdown sentinel
 if job == SHUTDOWN_SENTINEL:
 self.jobqueue.task_done()
 logger.debug("shutting down worker "+str(worker_number)+" on sentinel")
 # self._worker_state[worker_number] = "shutdown_sentinel"
 worker_active = False
 with self.active_worker_lock:
 self.active_worker_count -= 1
 logger.debug(str(self.active_worker_count)+" workers still active")
 continue

 logger.debug("got a job: "+repr(job))
 except queue.Empty:
 time.sleep(QUEUE_SLEEP)
 else:
 # Hook for preconnection
 # self._worker_state[worker_number] = "preconn"
 pcs = self.pre_connect(job)

 # Connect in configuration zero
 # self._worker_state[worker_number] = "conn_0"
 conn0 = self.connect(job, pcs, 0)

 # Connect in configuration one
 # self._worker_state[worker_number] = "conn_1"
 conn1 = self.connect(job, pcs, 1)

 # Pass results on for merge
 # self._worker_state[worker_number] = "postconn_0"
 self.resqueue.put(self.post_connect(job, conn0, pcs, 0))
 # self._worker_state[worker_number] = "postconn_1"
 self.resqueue.put(self.post_connect(job, conn1, pcs, 1))

 # self._worker_state[worker_number] = "done"
 logger.debug("job complete: "+repr(job))
 self.jobqueue.task_done()
 elif not self.stopping:
 time.sleep(QUEUE_SLEEP)
 else:
 # self._worker_state[worker_number] = "shutdown_complete"
 break

[docs]class PluggableSpider:
 @staticmethod
[docs] def register_args(subparsers):
 raise NotImplementedError("Cannot register an abstract plugin")

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_static/up.png

_modules/pathspider/plugins/ecn.html

 Navigation

 		
 index

 		
 modules |

 		PATHspider 1.0.1 documentation »

 		Module code »

 Source code for pathspider.plugins.ecn

import sys
import logging
import subprocess
import traceback
from datetime import datetime

import socket
import collections

from pathspider.base import SynchronizedSpider
from pathspider.base import PluggableSpider
from pathspider.base import Conn
from pathspider.base import NO_FLOW
from pathspider.observer import Observer
from pathspider.observer import basic_flow
from pathspider.observer import basic_count
from pathspider.observer.tcp import tcp_setup
from pathspider.observer.tcp import tcp_handshake
from pathspider.observer.tcp import tcp_complete
from pathspider.observer.tcp import TCP_SAE
from pathspider.observer.tcp import TCP_SAEC

SpiderRecord = collections.namedtuple("SpiderRecord", ["ip", "rport", "port",
 "rank", "host", "config",
 "connstate", "tstart", "tstop"])

USER_AGENT = "pathspider"

Chain functions

def ecn_setup(rec, ip):
 fields = ['fwd_ez', 'fwd_eo', 'fwd_ce', 'rev_ez', 'rev_eo', 'rev_ce']
 for field in fields:
 rec[field] = False
 return True

def ecn_code(rec, ip, rev):
 EZ = 0x02
 EO = 0x01
 CE = 0x03

 if ip.traffic_class & CE == EZ:
 rec['rev_ez' if rev else 'fwd_ez'] = True
 if ip.traffic_class & CE == EO:
 rec['rev_eo' if rev else 'fwd_eo'] = True
 if ip.traffic_class & CE == CE:
 rec['rev_ce' if rev else 'fwd_ce'] = True

 return True

ECN main class

class ECN(SynchronizedSpider, PluggableSpider):

 def __init__(self, worker_count, libtrace_uri, args):
 super().__init__(worker_count=worker_count,
 libtrace_uri=libtrace_uri,
 args=args)
 self.conn_timeout = args.timeout

[docs] def config_zero(self):
 """
 Disables ECN negotiation via sysctl.
 """

 logger = logging.getLogger('ecn')
 subprocess.check_call(['/sbin/sysctl', '-w', 'net.ipv4.tcp_ecn=2'],
 stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
 logger.debug("Configurator disabled ECN")

[docs] def config_one(self):
 """
 Enables ECN negotiation via sysctl.
 """

 logger = logging.getLogger('ecn')
 subprocess.check_call(['/sbin/sysctl', '-w', 'net.ipv4.tcp_ecn=1'],
 stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
 logger.debug("Configurator enabled ECN")

[docs] def connect(self, job, pcs, config):
 """
 Performs a TCP connection.
 """

 return self.tcp_connect(job)

[docs] def post_connect(self, job, conn, pcs, config):
 """
 Close the socket gracefully.
 """

 job_ip, job_port, job_host, job_rank = job

 tstop = str(datetime.utcnow())

 if conn.state == Conn.OK:
 rec = SpiderRecord(job_ip, job_port, conn.port, job_rank, job_host,
 config, True, conn.tstart, tstop)
 else:
 rec = SpiderRecord(job_ip, job_port, conn.port, job_rank, job_host,
 config, False, conn.tstart, tstop)

 try:
 conn.client.shutdown(socket.SHUT_RDWR)
 except: # FIXME: What are we catching?
 pass

 try:
 conn.client.close()
 except: # FIXME: What are we catching?
 pass

 return rec

 def create_observer(self):
 """
 Creates an observer with ECN-related chain functions.
 """

 logger = logging.getLogger('ecn')
 logger.info("Creating observer")
 try:
 return Observer(self.libtrace_uri,
 new_flow_chain=[basic_flow, tcp_setup, ecn_setup],
 ip4_chain=[basic_count, ecn_code],
 ip6_chain=[basic_count, ecn_code],
 tcp_chain=[tcp_handshake, tcp_complete])
 except:
 logger.error("Observer not cooperating, abandon ship")
 traceback.print_exc()
 sys.exit(-1)

[docs] def merge(self, flow, res):
 """
 Merge flow records.

 Includes the configuration and connection success or failure of the
 socket connection with the flow record.
 """

 logger = logging.getLogger('ecn')
 if flow == NO_FLOW:
 flow = {
 "dip": res.ip,
 "sp": res.port,
 "dp": res.rport,
 "observed": False,
 }
 else:
 flow['observed'] = True

 flow['rank'] = res.rank
 flow['host'] = res.host
 flow['connstate'] = res.connstate
 flow['config'] = res.config
 flow['tstart'] = res.tstart
 flow['tstop'] = res.tstop

 logger.debug("Result: " + str(flow))
 self.outqueue.put(flow)

 @staticmethod
 def register_args(subparsers):
 parser = subparsers.add_parser('ecn', help="Explicit Congestion Notification")
 parser.add_argument("--timeout", default=5, type=int, help="The timeout to use for attempted connections in seconds (Default: 5)")
 parser.set_defaults(spider=ECN)

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		PATHspider 1.0.1 documentation »

 All modules for which code is available

		pathspider.base

		pathspider.observer

		pathspider.observer.icmp

		pathspider.observer.tcp

		pathspider.plugins.ecn

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_modules/pathspider/observer.html

 Navigation

 		
 index

 		
 modules |

 		PATHspider 1.0.1 documentation »

 		Module code »

 Source code for pathspider.observer

import collections
import logging
import base64
import heapq
import queue
import math

import multiprocessing as mp

these three for debugging
import sys
import pdb
import traceback

from pathspider.base import SHUTDOWN_SENTINEL

def _flow4_ids(ip):
 # Only import this when needed
 import plt as libtrace

 # FIXME keep map of fragment IDs to keys

 icmp_with_payload = {3, 4, 5, 11, 12}
 quotation_fid = False
 if ip.proto == 1 and ip.icmp.type in icmp_with_payload:
 ip = libtrace.ip(ip.icmp.data[8:]) # pylint: disable=no-member
 quotation_fid = True

 protos_with_ports = {6, 17, 132, 136}
 if ip.proto in protos_with_ports:
 # key includes ports
 fid = ip.src_prefix.addr + ip.dst_prefix.addr + ip.data[9:10] + ip.payload[0:4]
 rid = ip.dst_prefix.addr + ip.src_prefix.addr + ip.data[9:10] + ip.payload[2:4] + ip.payload[0:2]
 else:
 # no ports, just 3-tuple
 fid = ip.src_prefix.addr + ip.dst_prefix.addr + ip.data[9:10]
 rid = ip.dst_prefix.addr + ip.src_prefix.addr + ip.data[9:10]

 if quotation_fid:
 # If the fid is based on an ICMP quotation, need to be reversed
 return (base64.b64encode(rid), base64.b64encode(fid))
 else:
 return (base64.b64encode(fid), base64.b64encode(rid))

def _flow6_ids(ip6):
 # FIXME link ICMP by looking at payload
 if ip6.proto == 6 or ip6.proto == 17 or ip6.proto == 132:
 # key includes ports
 fid = ip6.src_prefix.addr + ip6.dst_prefix.addr + ip6.data[6:7] + ip6.payload[0:4]
 rid = ip6.dst_prefix.addr + ip6.src_prefix.addr + ip6.data[6:7] + ip6.payload[2:4] + ip6.payload[0:2]
 else:
 # no ports, just 3-tuple
 fid = ip6.src_prefix.addr + ip6.dst_prefix.addr + ip6.data[6:7]
 rid = ip6.dst_prefix.addr + ip6.src_prefix.addr + ip6.data[6:7]
 return (base64.b64encode(fid), base64.b64encode(rid))

PacketClockTimer = collections.namedtuple("PacketClockTimer", ("time", "fn"))

[docs]class Observer:
 """
 Wraps a packet source identified by a libtrace URI,
 parses packets to divide them into flows, passing these
 packets and flows onto a function chain to allow
 data to be associated with each flow.
 """

[docs] def __init__(self, lturi,
 new_flow_chain=[],
 ip4_chain=[],
 ip6_chain=[],
 icmp4_chain=[],
 icmp6_chain=[],
 tcp_chain=[],
 udp_chain=[],
 l4_chain=[],
 idle_timeout=30,
 expiry_timeout=5):
 """
 Create an Observer.

 :param new_flow_chain: Array of functions to initialise new flows.
 :type new_flow_chain: array(function)
 :param ip4_chain: Array of functions to pass IPv4 headers to.
 :type ip4_chain: array(function)
 :param ip6_chain: Array of functions to pass IPv6 headers to.
 :type ip6_chain: array(function)
	:param icmp4_chain: Array of functions to pass IPv4 headers containing
 ICMPv4 headers to.
 :type icmp4_chain: array(function)
	:param icmp6_chain: Array of functions to pass IPv6 headers containing
 ICMPv6 headers to.
 :type icmp6_chain: array(function)
 :param tcp_chain: Array of functions to pass TCP headers to.
 :param tcp_chain: Array of functions to pass TCP headers to.
 :type tcp_chain: array(function)
 :param udp_chain: Array of functions to pass UDP headers to.
 :type udp_chain: array(function)
 :param l4_chain: Array of functions to pass other layer 4 headers to.
 :type l4_chain: array(function)
 :see also: :ref:`Observer Documentation <observer>`
 """

 # Only import this when needed
 import plt as libtrace

 # Control
 self._irq = None
 self._irq_fired = False

 # Libtrace initialization
 self._trace = libtrace.trace(lturi) # pylint: disable=no-member
 self._trace.start()
 self._pkt = libtrace.packet() # pylint: disable=no-member

 # Chains of functions to evaluate
 self._new_flow_chain = new_flow_chain
 self._ip4_chain = ip4_chain
 self._ip6_chain = ip6_chain
 self._icmp4_chain = icmp4_chain
 self._icmp6_chain = icmp6_chain
 self._tcp_chain = tcp_chain
 self._udp_chain = udp_chain
 self._l4_chain = l4_chain

 # Packet timer and bintables
 self._ptq = 0 # current packet timer, quantized
 self._idle_bins = {} # map bin number to set of fids
 self._expiry_bins = {} # map bin number to set of fids
 self._idle_timeout = idle_timeout
 self._expiry_timeout = expiry_timeout
 self._bin_quantum = 1

 #self._tq = [] # packet timer queue (heap)

 # Flow tables
 self._active = {}
 self._expiring = {}
 self._ignored = set()

 # Emitter queue
 self._emitted = collections.deque()

 # Statistics and logging
 self._logger = logging.getLogger("observer")
 self._ct_pkt = 0
 self._ct_nonip = 0
 self._ct_shortkey = 0
 self._ct_ignored = 0
 self._ct_flow = 0

 def _interrupted(self):
 if not self._irq_fired and self._irq is not None:
 try:
 self._irq.get_nowait()
 self._irq_fired = True
 except queue.Empty:
 pass

 return self._irq_fired

 def _next_packet(self):
 # Import only when needed
 import plt as libtrace

 # see if someone told us to stop
 if self._interrupted():
 return False

 # see if we're done iterating
 if not self._trace.read_packet(self._pkt):
 return False

 # count the packet
 self._ct_pkt += 1

 # advance the packet clock
 self._tick(self._pkt.seconds)

 # get a flow ID and associated flow record for the packet
 (fid, rec, rev) = self._get_flow()

 # don't dispatch if we don't have a record
 # (this happens for non-IP packets and flows
 # we know we want to ignore)
 if not rec:
 return True

 keep_flow = True

 # run IP header chains
 if self._pkt.ip:
 for fn in self._ip4_chain:
 keep_flow = keep_flow and fn(rec, self._pkt.ip, rev=rev)
 if self._pkt.icmp:
 for fn in self._icmp4_chain:
 q = libtrace.ip(self._pkt.ip.icmp.data[8:]) # pylint: disable=no-member
 keep_flow = keep_flow and fn(rec, self._pkt.ip, q, rev=rev)

 elif self._pkt.ip6:
 for fn in self._ip6_chain:
 keep_flow = keep_flow and fn(rec, self._pkt.ip6, rev=rev)
 if self._pkt.icmp6:
 for fn in self._icmp6_chain:
 q = libtrace.ip(self._pkt.ip.icmp6.data[8:]) # pylint: disable=no-member
 keep_flow = keep_flow and fn(rec, self._pkt.ip6, q, rev=rev)

 # run transport header chains
 if self._pkt.tcp:
 for fn in self._tcp_chain:
 keep_flow = keep_flow and fn(rec, self._pkt.tcp, rev=rev)
 elif self._pkt.udp:
 for fn in self._udp_chain:
 keep_flow = keep_flow and fn(rec, self._pkt.udp, rev=rev)
 else:
 for fn in self._l4_chain:
 keep_flow = keep_flow and fn(rec, self._pkt, rev=rev)

 # complete the flow if any chain function asked us to
 if not keep_flow:
 self._flow_complete(fid)

 # we processed a packet, keep going
 return True

 # def _set_timer(self, delay, fid):
 # # add to queue
 # heapq.heappush(self._tq, PacketClockTimer(self._pt + delay,
 # self._finish_expiry_tfn(fid)))

 def _get_flow(self):
 """
 Get a flow record for the given packet.
 Create a new basic flow record
 """
 # get possible a flow IDs for the packet
 try:
 if self._pkt.ip:
 (ffid, rfid) = _flow4_ids(self._pkt.ip)
 ip = self._pkt.ip
 elif self._pkt.ip6:
 (ffid, rfid) = _flow6_ids(self._pkt.ip6)
 ip = self._pkt.ip6
 else:
 # we don't care about non-IP packets
 self._ct_nonip += 1
 return (None, None, False)
 except ValueError:
 self._ct_shortkey += 1
 return (None, None, False)

 # now look for forward and reverse in ignored, active,
 # and expiring tables.
 if ffid in self._ignored:
 return (None, None, False)
 elif rfid in self._ignored:
 return (None, None, False)
 elif ffid in self._active:
 (fid, rec, active) = (ffid, self._active[ffid], True)
 #self._logger.debug("found forward flow for "+str(ffid))
 elif ffid in self._expiring:
 (fid, rec, active) = (ffid, self._expiring[ffid], False)
 #self._logger.debug("found expiring forward flow for "+str(ffid))
 elif rfid in self._active:
 (fid, rec, active) = (rfid, self._active[rfid], True)
 #self._logger.debug("found reverse flow for "+str(rfid))
 elif rfid in self._expiring:
 (fid, rec, active) = (rfid, self._expiring[rfid], False)
 #self._logger.debug("found expiring reverse flow for "+str(rfid))
 else:
 # nowhere to be found. new flow.
 rec = {'first': ip.seconds, '_idle_bin': 0}
 for fn in self._new_flow_chain:
 if not fn(rec, ip):
 # self._logger.debug("ignoring "+str(ffid))
 self._ignored.add(ffid)
 self._ct_ignored += 1
 return (None, None, False)

 # wasn't vetoed. add to active table.
 fid = ffid
 self._active[ffid] = rec
 active = True
 # self._logger.debug("new flow for "+str(ffid))
 self._ct_flow += 1

 # update time and idle bin and return record
 rec['last'] = ip.seconds

 # update idle bin if we're not expiring
 if active:
 new_idle_bin = math.ceil((rec['last'] + self._idle_timeout) / self._bin_quantum) * self._bin_quantum

 if new_idle_bin > rec["_idle_bin"] :

 if rec['_idle_bin'] in self._idle_bins:
 self._idle_bins[rec['_idle_bin']] -= set((fid,))
 if new_idle_bin in self._idle_bins:
 self._idle_bins[new_idle_bin] |= set((fid,))
 else:
 self._idle_bins[new_idle_bin] = set((fid,))

 rec['_idle_bin'] = new_idle_bin

 return (fid, rec, bool(fid == rfid))

 def _flow_complete(self, fid):
 """
 Mark a given flow ID as complete
 """
 # skip all of this unless the flow is still in the active table
 if fid not in self._active:
 return

 # remove flow ID from idle bin
 rec = self._active[fid]
 self._idle_bins[rec['_idle_bin']] -= set((fid,))

 del(rec['_idle_bin'])

 # move record to expiring table
 self._expiring[fid] = rec
 del self._active[fid]

 # assign expiry bin
 expiry_bin = math.ceil((self._ptq + self._expiry_timeout) / self._bin_quantum) * self._bin_quantum
 #self._logger.debug("Completing flow "+str(fid)+" at "+str(self._ptq)+" to expire "+str(expiry_bin)+" (in "+str(expiry_bin-self._ptq)+"s)")

 if expiry_bin in self._expiry_bins:
 self._expiry_bins[expiry_bin] |= set((fid,))
 else:
 self._expiry_bins[expiry_bin] = set((fid,))

 def _emit_flow(self, rec):
 self._emitted.append(rec)

 def _next_flow(self):
 while len(self._emitted) == 0:
 if not self._next_packet():
 return None

 return self._emitted.popleft()

 def _tick(self, pt):
 # quantize and skip if we're not advancing
 next_ptq = math.ceil(pt / self._bin_quantum) * self._bin_quantum
 if next_ptq <= self._ptq:
 return
 elif self._ptq == 0:
 # handle zero case
 self._ptq = next_ptq
 return

 # advance quantum
 for bint in range(self._ptq + self._bin_quantum, next_ptq + self._bin_quantum, self._bin_quantum):
 self._logger.debug("tick: "+str(bint))

 # process idle
 if bint in self._idle_bins:
 if len(self._idle_bins[bint]) > 0:
 for fid in self._idle_bins[bint].copy():
 self._flow_complete(fid)
 del(self._idle_bins[bint])

 # process expiry
 if bint in self._expiry_bins:
 if len(self._expiry_bins[bint]) > 0:
 for fid in self._expiry_bins[bint].copy():
 self._emit_flow(self._expiring[fid])
 del self._expiring[fid]
 del(self._expiry_bins[bint])

 self._ptq = next_ptq

 # def _tick(self, pt):
 # # Advance packet clock
 # self._pt = pt

 # # fire all timers whose time has come
 # while len(self._tq) > 0 and pt > min(self._tq, key=lambda x: x.time).time:
 # try:
 # heapq.heappop(self._tq).fn()
 # except:
 # type, value, tb = sys.exc_info()
 # traceback.print_exc()
 # pdb.post_mortem(tb)

 # def _finish_expiry_tfn(self, fid):
 # """
 # On expiry timer, emit the flow
 # and delete it from the expiring queue
 # """
 # def tfn():
 # if fid in self._expiring:
 # self._emit_flow(self._expiring[fid])
 # del self._expiring[fid]
 # # self._logger.debug("emitted "+str(fid)+" on expiry")
 # return tfn

 # def purge_idle(self, timeout=30):
 # # TODO test this, it's probably pretty slow.
 # for fid in self._active:
 # if self._pt - self._active['fid']['last'] > timeout:
 # self._flow_complete(fid)

[docs] def flush(self):
 for fid in self._expiring:
 self._emit_flow(self._expiring[fid])
 # self._logger.debug("emitted "+str(fid)+" expiring during flush")
 self._expiring.clear()

 for fid in self._active:
 self._emit_flow(self._active[fid])
 # self._logger.debug("emitted "+str(fid)+" active during flush")
 self._active.clear()

 self._ignored.clear()

[docs] def run_flow_enqueuer(self, flowqueue, irqueue=None):
 if irqueue:
 self._irq = irqueue
 self._irq_fired = None

 # Run main loop until last packet seen
 # then flush active flows and run again
 for i in range(2):
 while True:
 f = self._next_flow()
 if f:
 flowqueue.put(f)
 else:
 self.flush()
 break

 # log observer info on shutdown
 self._logger.info(
 ("processed %u packets "+
 "(%u dropped, %u short, %u non-ip) "+
 "into %u flows (%u ignored)") % (
 self._ct_pkt, self._trace.pkt_drops(),
 self._ct_shortkey, self._ct_nonip,
 self._ct_flow, self._ct_ignored))

 flowqueue.put(SHUTDOWN_SENTINEL)

[docs]def extract_ports(ip):
 if ip.udp:
 return (ip.udp.src_port, ip.udp.dst_port)
 elif ip.tcp:
 return (ip.tcp.src_port, ip.tcp.dst_port)
 else:
 return (None, None)

[docs]def basic_flow(rec, ip):
 """
 New flow function that sets up basic flow information
 """

 # Extract addresses and ports
 (rec['sip'], rec['dip'], rec['proto']) = (str(ip.src_prefix), str(ip.dst_prefix), ip.proto)
 (rec['sp'], rec['dp']) = extract_ports(ip)

 # Initialize counters
 rec['pkt_fwd'] = 0
 rec['pkt_rev'] = 0
 rec['oct_fwd'] = 0
 rec['oct_rev'] = 0

 # we want to keep this flow
 return True

[docs]def basic_count(rec, ip, rev):
 """
 Packet function that counts packets and octets per flow
 """

 if rev:
 rec["pkt_rev"] += 1
 rec["oct_rev"] += ip.size
 else:
 rec["pkt_fwd"] += 1
 rec["oct_fwd"] += ip.size

 return True

[docs]def simple_observer(lturi):
 return Observer(lturi,
 new_flow_chain=[basic_flow],
 ip4_chain=[basic_count],
 ip6_chain=[basic_count])

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_static/down.png

_images/pathspider_arch.png
sysctl

test traffic

configurator

isync
1
P— —

workers

target
queue

target
v

info

merger

traffic

—

info

observer

output
data

_static/comment-close.png

_static/down-pressed.png

_modules/pathspider/observer/icmp.html

 Navigation

 		
 index

 		
 modules |

 		PATHspider 1.0.1 documentation »

 		Module code »

 		pathspider.observer »

 Source code for pathspider.observer.icmp

ICMP_UNREACHABLE = 3

[docs]def icmp_setup(rec, ip):
 rec['icmp_unreachable'] = False
 return True

[docs]def icmp_unreachable(rec, ip, q, rev):
 if rev and ip.icmp.type == ICMP_UNREACHABLE:
 rec['icmp_unreachable'] = True
 return not rec['icmp_unreachable']

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_modules/pathspider/observer/tcp.html

 Navigation

 		
 index

 		
 modules |

 		PATHspider 1.0.1 documentation »

 		Module code »

 		pathspider.observer »

 Source code for pathspider.observer.tcp

TCP_CWR = 0x80
TCP_ECE = 0x40
TCP_URG = 0x20
TCP_ACK = 0x10
TCP_PSH = 0x08
TCP_RST = 0x04
TCP_SYN = 0x02
TCP_FIN = 0x01

TCP_SA = (TCP_SYN | TCP_ACK)
TCP_SEC = (TCP_SYN | TCP_ECE | TCP_CWR)
TCP_SAEC = (TCP_SYN | TCP_ACK | TCP_ECE | TCP_CWR)
TCP_SAE = (TCP_SYN | TCP_ACK | TCP_ECE)

[docs]def tcp_setup(rec, ip):
 rec['fwd_syn_flags'] = None
 rec['rev_syn_flags'] = None

 rec['fwd_fin'] = False
 rec['rev_fin'] = False
 rec['fwd_rst'] = False
 rec['rev_rst'] = False

 rec['tcp_connected'] = False

 return True

[docs]def tcp_handshake(rec, tcp, rev):
 if rec['tcp_connected']:
 # short-circuit if we're done here
 return True

 if tcp.syn_flag:
 rec['rev_syn_flags' if rev else 'fwd_syn_flags'] = tcp.flags

 # TODO: This test could perhaps be improved upon.
 # This test is intended to catch the completion of the 3WHS.
 if (not rec['tcp_connected'] and rev == 0 and
 rec['fwd_syn_flags'] is not None and
 rec['rev_syn_flags'] is not None and
 tcp.ack_flag):
 rec['tcp_connected'] = True

 return True

[docs]def tcp_complete(rec, tcp, rev):
 if tcp.fin_flag and rev:
 rec['rev_fin'] = True
 if tcp.fin_flag and not rev:
 rec['fwd_fin'] = True
 if tcp.rst_flag and rev:
 rec['rev_rst'] = True
 if tcp.rst_flag and not rev:
 rec['fwd_rst'] = True

 return not ((rec['fwd_fin'] and rec['rev_fin']) or
 rec['fwd_rst'] or rec['rev_rst'])

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		PATHspider 1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/pathspider_arch.png
sysctl

test traffic

configurator

isync
1
P— —

workers

target
queue

target
v

info

merger

traffic

—

info

observer

output
data

_static/pathspider.png
PATHspider

