

 Navigation

 	
 index

 	
 next |

 	PATHspider 0.9.0 documentation

Welcome to PATHspider’s documentation!

Contents:

	Introduction

	Using PATHspider
	Quickstart

	Architecture

	Writing a plugin
	Required Functions

	Plugin Template

	ISpider Interface

	Abstract Spider

	Observer
	Observer Function Chains

	Observer Implementation

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PATHspider 0.9.0 documentation

Introduction

pathspider spiders paths

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PATHspider 0.9.0 documentation

Using PATHspider

Quickstart

Dependencies

PATHspider is a command line tool. If you have installed PATHspider from a
package manager (e.g. apt or pip), you will already have all the dependencies
you need installed.

If you are working from the source distribution (e.g. cloned git repository)
then you will need to install some dependencies. On Debian GNU/Linux:

sudo apt install python3-libtrace python3-twisted python3-zope.interface

In order to build the documentation from source, you will also need the
following dependencies:

sudo apt install python3-sphinx python3-repoze.sphinx.autointerface

Usage

You can run PATHspider from the command line. In order for the Observer to
work, you will need permissions to capture raw packets from the network
interface. If you’ve installed from apt then either the executable in /usr/bin
will have been setuid or will have filesystem permissions set.

Note

If you’re running from the source distribution, you will need to execute
pathspider as:

sudo /usr/bin/env PYTHONPATH=. python3 pathspider/run.py [...]

pathspider -h
usage: run.py [-h] [-s] [-l] [-p PLUGIN] [-i INTERFACE] [-w WORKER_COUNT]
 INPUTFILE OUTPUTFILE

Pathspider will spider the paths.

positional arguments:
 INPUTFILE a file containing a list of remote hosts to test, with
 any accompanying metadata expected by the pathspider
 test. this file should be formatted as a comma-
 seperated values file.
 OUTPUTFILE the file to output results data to

optional arguments:
 -h, --help show this help message and exit
 -s, --standalone run in standalone mode. this is the default mode (and
 currently the only supported mode). in the future,
 mplane will be supported as a mode of operation.
 -l, --list-plugins print the list of installed plugins
 -p PLUGIN, --plugin PLUGIN
 use named plugin
 -i INTERFACE, --interface INTERFACE
 the interface to use for the observer
 -w WORKER_COUNT, --worker-count WORKER_COUNT
 number of workers to use

Example

You can run a small study using ECNSpider and the included webinput.csv file
to measure path transparency to ECN for a small selection of web servers:

pathspider -i eth0 -w 10 examples/webinput.csv /tmp/results.txt

Note

The location of the example input file may be different if you’ve installed
pathspider from a package manager. On Debian systems it is installed as
/usr/share/doc/pathspider/examples/webinput.csv.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PATHspider 0.9.0 documentation

Architecture

The PATHspider architecture has four components, illustrated in
the diagram below: the configurator, the workers, the observer and the merger. Each component is implemented as one or more
threads, launched when PATHspider starts.

[image: Overview of PATHspider architecture]
An overview of the PATHspider architecture

For each target hostname and/or address, with port numbers where appropriate,
PATHspider enqueues a job, to be distributed amongst the worker threads when
available. Each worker performs one connection with the “A” configuration
and one connection with the “B” configuration. The “A” configuration will
always be connected first and serves as the base line measurement, followed by
the “B” configuration. This allows detection of hosts that do not respond
rather than failing as a result of using a particular transport protocol or
extension. These sockets remain open for a post-connection operation.

Some transport options require a system-wide parameter change, for example
enabling ECN in the Linux kernel. This requires locking and synchronisation.
Using semaphores, the configurator waits for each worker to complete an
operation and then changes the state to perform the next batch of operations.
This process cycles continually until no more jobs remain. In a typical
experiment, multiple workers (on the order of hundreds) are active, since much
of the time in a connection test is spent waiting for an answer for the
target or a timeout to fire.

In addition, packets are separately captured for analysis by the observer using
Python bindings for libtrace [https://www.cs.auckland.ac.nz/~nevil/python-libtrace/]. First, the observer
assigns each incoming packet to a flow based on the source and destination
addresses, as well as the TCP, UDP or SCTP ports when available. The packet and
its associated flow are then passed to a function chain. The functions in this
chain may be simple functions, such as counting the number of packets or octets
seen for a flow, or more complex functions, such as recording the state of
flags within packets and analysis based on previously observed packets in the
flow. For example, a function may record both an ECN negotiation attempt and
whether the host successfully negotiated use of ECN.

A function may alert the observer that a flow should have completed and that
the flow information can be matched with the corresponding job record and
passed to the merger. The merger extracts the fields needed for a particular
measurement campaign from the records produced by the worker and the observer.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PATHspider 0.9.0 documentation

Writing a plugin

PATHspider is written to be extensible and the plugins that included in the
PATHspider distribution are only examples of the measurements that PATHspider
can perform.

The exact specification of plugins is defined in
pathspider.base.ISpider, though much of the functionality
required is implemented by the abstract pathspider.base.Spider class
which plugins should inherit.

Required Functions

In order to write a plugin you will need to produce implementations for the
following: config_zero, config_one, connect and merge.

Optionally, you can provide pre_connect and
post_connect.

Configurator

These functions perform global changes that may be required between performing
the baseline (A) and the experimental (B) configurations. The changes may
be a call to sysctl, changes via netfilter or a call to a robot arm to
reposition the satellite array. In the event that global state changes are
not required, these can be implemented as no-ops.

An example implementation of these methods can be found in ecnspider3:

	
ECNSpider.config_zero()[source]

	Disables ECN negotiation via sysctl.

	
ECNSpider.config_one()[source]

	Enables ECN negotiation via sysctl.

(Pre-,Post-)Connection

The pre-connection function will run only once, and the result of the
pre-connection operation will be available to both runs of the connection and
post-connection functions.

If you require to pass different values depending on the configuration, you can
perform two operations in the pre-connect function, returning a tuple, and
selecting the value to use based on the configuration in the later functions.

An example implementation of these methods can be found in ecnspider3:

	
ECNSpider.connect(job, pcs, config)[source]

	Performs a TCP connection.

	
ECNSpider.post_connect(job, conn, pcs, config)[source]

	Close the socket gracefully.

Merging

The merge function will be called for every job and given the job record and
the observer record. The merge function is then to return the final record
to be recorded in the dataset for the measurement run.

Warning

It is possible for the Observer to return a NO_FLOW object in
some circumstances, where the flow has not been observed. Any
implementation must handle this gracefully.

An example implementation of this method can be found in ecnspider3:

	
ECNSpider.merge(flow, res)[source]

	Merge flow records.

Includes the configuration and connection success or failure of the
socket connection with the flow record.

Plugin Template

A template plugin is available in the plugins that ship with the PATHspider
distribution:

	
class templatespider.TemplateSpider[source]

	A template PATHspider plugin.

ISpider Interface

PATHspider will expect the following functions and attributes to be available
in any plugin:

	
interface pathspider.base.ISpider[source]

	The ISpider interface defines the expected interface for PATHspider plugins.

	
start(self)

	

	
config_one(self)

	

	
terminate(self)

	

	
config_zero(self)

	

	
exception_wrapper(self, target, *args, **kwargs)

	

	
merge(self, flow, res)

	

	
post_connect(self, job, conn, pcs, config)

	

	
merger(self)

	

	
shutdown(self)

	

	
activate(self, worker_count, libtrace_uri)

	

	
create_observer(self)

	

	
add_job(self, job)

	

	
pre_connect(self, job)

	

	
configurator(self)

	

	
connect(self, job, pcs, config)

	

	
worker(self, worker_number)

	

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PATHspider 0.9.0 documentation

Abstract Spider

The core functionality of PATHspider is implemented in
pathspider.base.Spider. The documentation for this class is below:

	
class pathspider.base.Spider[source]

	A spider consists of a configurator (which alternates between two system
configurations), a large number of workers (for performing some network
action for each configuration), an Observer which derives information from
passively observed traffic, and a thread that merges results from the
workers with flow records from the collector.

	
activate(worker_count, libtrace_uri)[source]

	The activate function performs initialisation of a pathspider plugin.

	Parameters:	
	worker_count (int) – The number of workers to use.

	libtrace_uri (str) – The URI to pass to the Observer to describe the
interface on which packets should be captured.

	See also:	pathspider.base.ISpider.activate()

It is expected that this function will be overloaded by plugins, though
the plugin should always make a call to the activate() function of the
abstract Spider class as this initialises all of the base functionality:

super().activate(worker_count=worker_count,
 libtrace_uri=libtrace_uri,
 check_interrupt=check_interrupt)

This can be used to initialise any variables which may be required in
the object. Do not initialise any variables in the __init__ method, or
perform any other operations there as all plugins must be instantiated
in order to be loaded and this will cause unnecessary delays in the
starting of pathspider.

	
add_job(job)[source]

	Adds a job to the job queue.

If PATHspider is currently stopping, the job will not be added to the
queue.

	
config_one()[source]

	Changes the global state or system configuration for the
experimental measurements.

	
config_zero()[source]

	Changes the global state or system configuration for the
baseline measurements.

	
configurator()[source]

	Thread which synchronizes on a set of semaphores and alternates
between two system states.

	
connect(job, pcs, config)[source]

	Performs the connection.

	Parameters:	
	job (dict) – The job record.

	pcs (dict) – The result of the pre-connection operations(s).

	config (int) – The current state of the configurator (0 or 1).

	Returns:	object – Any result of the connect operation to be passed
to pathspider.base.Spider.post_connect().

The connect function is used to perform the connection operation and
is run for both the A and B test. This method is not implemented in
the abstract pathspider.base.Spider class and must be
implemented by any plugin.

Sockets created during this operation can be returned by the function
for use in the post-connection phase, to minimise the time that the
configurator is blocked from moving to the next configuration.

	
create_observer()[source]

	Create a flow observer.

This function is called by the base Spider logic to get an instance
of pathspider.observer.Observer configured with the function
chains that are requried by the plugin.

This method is not implemented in the abstract
pathspider.base.Spider class and must be implemented by any
plugin.

For more information on how to use the flow observer, see
Observer.

	
merge(flow, res)[source]

	Merge a job record with a flow record.

	Parameters:	
	flow (dict) – The flow record.

	res (dict) – The job record.

	Returns:	tuple – Final record for job.

In order to create a final record for reporting on a job, the final job
record must be merged with the flow record. This function should
be implemented by any plugin to provide the logic for this merge as
the keys used in these records cannot be known by PATHspider in advance.

This method is not implemented in the abstract
pathspider.base.Spider class and must be implemented by any
plugin.

	
merger()[source]

	Thread to merge results from the workers and the observer.

	
post_connect(job, conn, pcs, config)[source]

	Performs post-connection operations.

	Parameters:	
	job (dict) – The job record.

	conn (object) – The result of the connection operation(s).

	pcs (dict) – The result of the pre-connection operations(s).

	config (int) – The state of the configurator during
pathspider.base.Spider.connect().

	Returns:	dict – Result of the pre-connection operation(s).

The post_connect function can be used to perform any operations that
must be performed after each connection. It will be run for both the
A and the B configuration, and is not synchronised with the
configurator.

Plugins to PATHspider can optionally implement this function. If this
function is not overloaded, it will be a noop.

Any sockets or other file handles that were opened during
pathspider.base.Spider.connect() should be closed in this
function if they have not been already.

	
pre_connect(job)[source]

	Performs pre-connection operations.

	Parameters:	job (dict) – The job record.

	Returns:	dict – Result of the pre-connection operation(s).

The pre_connect function can be used to perform any operations that
must be performed before each connection. It will be run only once
per job, with the same result passed to both the A and B connect
calls. This function is not synchronised with the configurator.

Plugins to PATHspider can optionally implement this function. If this
function is not overloaded, it will be a noop.

	
shutdown()[source]

	Shut down PathSpider in an orderly fashion,
ensuring that all queued jobs complete,
and all available results are merged.

	
start()[source]

	This function starts a PATHspider plugin.

In order to run, the plugin must have first been activated by calling
its activate() method. This function causes the following to
happen:

	Set the running flag

	Create an pathspider.observer.Observer and start its
process

	Start the merger thread

	Start the configurator thread

	Start the worker threads

The number of worker threads to start was given when activating the
plugin.

	
terminate()[source]

	Shut down PathSpider as quickly as possible,
without any regard to completeness of results.

	
worker(worker_number)[source]

	This function provides the logic for the worker threads.

	Parameters:	worker_number (int) – The unique number of the worker.

The workers operate as continuous loops:

	Fetch next job from the job queue

	Perform pre-connection operations

	Acquire a lock for “config_zero”

	Perform the “config_zero” connection

	Release “config_zero”

	Acquire a lock for “config_one”

	Perform the “config_one” connection

	Release “config_one”

	Perform post-connection operations for config_zero and pass the
result to the merger

	Perform post-connection operations for config_one and pass the
result to the merger

	Do it all again

If the job fetched is the SHUTDOWN_SENTINEL, then the worker will
terminate as this indicates that all the jobs have now been processed.

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	PATHspider 0.9.0 documentation

Observer

Observer Function Chains

PATHspider’s observer will accept functions and pass python-libtrace dissected
packets along with the associated flow record to them for every packet
recieved.

	Function Chain
	Description

	new_flow_chain
	Functions to initialise fields in the flow
record for new flows.

	ip4_chain
	Functions to record details from IPv4 headers.

	ip6_chain
	Functions to record details from IPv6 headers.

	tcp_chain
	Functions to record details from TCP headers.

	udp_chain
	Functions to record details from UDP headers.

	l4_chain
	Functions to record details from other layer
4 headers.

If a function returns False, the Observer will consider the flow to be finished
and will pass it to be merged with the job record after a short delay.

Observer Implementation

	
class pathspider.observer.Observer(lturi, new_flow_chain=[], ip4_chain=[], ip6_chain=[], tcp_chain=[], udp_chain=[], l4_chain=[])[source]

	Wraps a packet source identified by a libtrace URI,
parses packets to divide them into flows, passing these
packets and flows onto a function chain to allow
data to be associated with each flow.

	
__init__(lturi, new_flow_chain=[], ip4_chain=[], ip6_chain=[], tcp_chain=[], udp_chain=[], l4_chain=[])[source]

	Create an Observer.

	Parameters:	
	new_flow_chain (array(function)) – Array of functions to initialise new flows.

	ip4_chain (array(function)) – Array of functions to pass IPv4 headers to.

	ip6_chain (array(function)) – Array of functions to pass IPv6 headers to.

	tcp_chain (array(function)) – Array of functions to pass TCP headers to.

	udp_chain (array(function)) – Array of functions to pass UDP headers to.

	l4_chain (array(function)) – Array of functions to pass other layer 4 headers to.

	See also:	Observer Documentation

	
flush()[source]

	

	
purge_idle(timeout=30)[source]

	

	
run_flow_enqueuer(flowqueue, irqueue=None)[source]

	

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	PATHspider 0.9.0 documentation

Index

 _
 | A
 | C
 | E
 | F
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | W

_

 	

 	__init__() (pathspider.observer.Observer method)

A

 	

 	activate() (ISpider method)

 	

 	(pathspider.base.Spider method)

 	

 	add_job() (ISpider method)

 	

 	(pathspider.base.Spider method)

C

 	

 	config_one() (ecnspider3.ECNSpider method)

 	

 	(ISpider method)

 	(pathspider.base.Spider method)

 	config_zero() (ecnspider3.ECNSpider method)

 	

 	(ISpider method)

 	(pathspider.base.Spider method)

 	configurator() (ISpider method)

 	

 	(pathspider.base.Spider method)

 	

 	connect() (ecnspider3.ECNSpider method)

 	

 	(ISpider method)

 	(pathspider.base.Spider method)

 	create_observer() (ISpider method)

 	

 	(pathspider.base.Spider method)

E

 	

 	exception_wrapper() (ISpider method)

F

 	

 	flush() (pathspider.observer.Observer method)

I

 	

 	ISpider (interface in pathspider.base)

M

 	

 	merge() (ecnspider3.ECNSpider method)

 	

 	(ISpider method)

 	(pathspider.base.Spider method)

 	

 	merger() (ISpider method)

 	

 	(pathspider.base.Spider method)

O

 	

 	Observer (class in pathspider.observer)

P

 	

 	post_connect() (ecnspider3.ECNSpider method)

 	

 	(ISpider method)

 	(pathspider.base.Spider method)

 	pre_connect() (ISpider method)

 	

 	(pathspider.base.Spider method)

 	

 	purge_idle() (pathspider.observer.Observer method)

R

 	

 	run_flow_enqueuer() (pathspider.observer.Observer method)

S

 	

 	shutdown() (ISpider method)

 	

 	(pathspider.base.Spider method)

 	Spider (class in pathspider.base)

 	

 	start() (ISpider method)

 	

 	(pathspider.base.Spider method)

T

 	

 	TemplateSpider (class in templatespider)

 	

 	terminate() (ISpider method)

 	

 	(pathspider.base.Spider method)

W

 	

 	worker() (ISpider method)

 	

 	(pathspider.base.Spider method)

 Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/pathspider_arch.png
sysctl

test traffic

configurator

isync
1
P— —

workers

target
queue

target
v

info

merger

traffic

—

info

observer

output
data

_static/plus.png

search.html

 Navigation

 		
 index

 		PATHspider 0.9.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_images/pathspider_arch.png
sysctl

test traffic

configurator

isync
1
P— —

workers

target
queue

target
v

info

merger

traffic

—

info

observer

output
data

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		PATHspider 0.9.0 documentation »

 All modules for which code is available

		ecnspider3

		pathspider.base

		pathspider.observer

		templatespider

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_modules/pathspider/observer.html

 Navigation

 		
 index

 		PATHspider 0.9.0 documentation »

 		Module code »

 Source code for pathspider.observer

import collections
import logging
import base64
import heapq
import queue

import multiprocessing as mp

these three for debugging
import sys
import pdb
import traceback

SHUTDOWN_SENTINEL = None

def _flow4_ids(ip):
 # FIXME keep map of fragment IDs to keys
 # FIXME link ICMP by looking at payload
 if ip.proto == 6 or ip.proto == 17 or ip.proto == 132:
 # key includes ports
 fid = ip.src_prefix.addr + ip.dst_prefix.addr + ip.data[9:10] + ip.payload[0:4]
 rid = ip.dst_prefix.addr + ip.src_prefix.addr + ip.data[9:10] + ip.payload[2:4] + ip.payload[0:2]
 else:
 # no ports, just 3-tuple
 fid = ip.src_prefix.addr + ip.dst_prefix.addr + ip.data[9:10]
 rid = ip.dst_prefix.addr + ip.src_prefix.addr + ip.data[9:10]
 return (base64.b64encode(fid), base64.b64encode(rid))

def _flow6_ids(ip6):
 # FIXME link ICMP by looking at payload
 if ip6.proto == 6 or ip6.proto == 17 or ip6.proto == 132:
 # key includes ports
 fid = ip6.src_prefix.addr + ip6.dst_prefix.addr + ip6.data[6:7] + ip6.payload[0:4]
 rid = ip6.dst_prefix.addr + ip6.src_prefix.addr + ip6.data[6:7] + ip6.payload[2:4] + ip6.payload[0:2]
 else:
 # no ports, just 3-tuple
 fid = ip6.src_prefix.addr + ip6.dst_prefix.addr + ip6.data[6:7]
 rid = ip6.dst_prefix.addr + ip6.src_prefix.addr + ip6.data[6:7]
 return (base64.b64encode(fid), base64.b64encode(rid))

PacketClockTimer = collections.namedtuple("PacketClockTimer", ("time", "fn"))

[docs]class Observer:
 """
 Wraps a packet source identified by a libtrace URI,
 parses packets to divide them into flows, passing these
 packets and flows onto a function chain to allow
 data to be associated with each flow.
 """

[docs] def __init__(self, lturi,
 new_flow_chain=[],
 ip4_chain=[],
 ip6_chain=[],
 tcp_chain=[],
 udp_chain=[],
 l4_chain=[]):
 """
 Create an Observer.

 :param new_flow_chain: Array of functions to initialise new flows.
 :type new_flow_chain: array(function)
 :param ip4_chain: Array of functions to pass IPv4 headers to.
 :type ip4_chain: array(function)
 :param ip6_chain: Array of functions to pass IPv6 headers to.
 :type ip6_chain: array(function)
 :param tcp_chain: Array of functions to pass TCP headers to.
 :type tcp_chain: array(function)
 :param udp_chain: Array of functions to pass UDP headers to.
 :type udp_chain: array(function)
 :param l4_chain: Array of functions to pass other layer 4 headers to.
 :type l4_chain: array(function)
 :see also: :ref:`Observer Documentation <observer>`
 """

 # Only import this when needed
 import plt as libtrace

 # Control
 self._irq = None
 self._irq_fired = False

 # Libtrace initialization
 self._trace = libtrace.trace(lturi)
 self._trace.start()
 self._pkt = libtrace.packet()

 # Chains of functions to evaluate
 self._new_flow_chain = new_flow_chain
 self._ip4_chain = ip4_chain
 self._ip6_chain = ip6_chain
 self._tcp_chain = tcp_chain
 self._udp_chain = udp_chain
 self._l4_chain = l4_chain

 # Packet timer and timer queue
 self._pt = 0 # current packet timer
 self._tq = [] # packet timer queue (heap)

 # Flow tables
 self._active = {}
 self._expiring = {}
 self._ignored = set()

 # Emitter queue
 self._emitted = collections.deque()

 # Statistics
 self._ct_pkt = 0
 self._ct_nonip = 0
 self._ct_shortkey = 0
 self._ct_ignored = 0
 self._ct_flow = 0

 def _interrupted(self):
 try:
 if not self._irq_fired and self._irq is not None:
 self._irq.get_nowait()
 self._irq_fired = True
 except queue.Empty:
 pass

 return self._irq_fired

 def _next_packet(self):
 # see if we're done iterating
 if not self._trace.read_packet(self._pkt):
 return False

 # see if someone told us to stop
 if self._interrupted():
 return False

 # count the packet
 self._ct_pkt += 1

 # advance the packet clock
 self._tick(self._pkt.seconds)

 # get a flow ID and associated flow record for the packet
 (fid, rec, rev) = self._get_flow()

 # don't dispatch if we don't have a record
 # (this happens for non-IP packets and flows
 # we know we want to ignore)
 if not rec:
 return True

 keep_flow = True

 # run IP header chains
 if self._pkt.ip:
 for fn in self._ip4_chain:
 keep_flow = keep_flow and fn(rec, self._pkt.ip, rev=rev)
 elif self._pkt.ip6:
 for fn in self._ip6_chain:
 keep_flow = keep_flow and fn(rec, self._pkt.ip6, rev=rev)

 # run transport header chains
 if self._pkt.tcp:
 for fn in self._tcp_chain:
 keep_flow = keep_flow and fn(rec, self._pkt.tcp, rev=rev)
 elif self._pkt.udp:
 for fn in self._udp_chain:
 keep_flow = keep_flow and fn(rec, self._pkt.udp, rev=rev)
 else:
 for fn in self._l4_chain:
 keep_flow = keep_flow and fn(rec, self._pkt, rev=rev)

 # complete the flow if any chain function asked us to
 if not keep_flow:
 self._flow_complete(fid)

 # we processed a packet, keep going
 return True

 def _set_timer(self, delay, fid):
 # add to queue
 heapq.heappush(self._tq, PacketClockTimer(self._pt + delay,
 self._finish_expiry_tfn(fid)))

 def _get_flow(self):
 """
 Get a flow record for the given packet.
 Create a new basic flow record
 """
 logger = logging.getLogger("observer")
 # get possible a flow IDs for the packet
 try:
 if self._pkt.ip:
 (ffid, rfid) = _flow4_ids(self._pkt.ip)
 ip = self._pkt.ip
 elif self._pkt.ip6:
 (ffid, rfid) = _flow6_ids(self._pkt.ip6)
 ip = self._pkt.ip6
 else:
 # we don't care about non-IP packets
 self._ct_nonip += 1
 return (None, None, False)
 except ValueError:
 self._ct_shortkey += 1
 return (None, None, False)

 # now look for forward and reverse in ignored, active,
 # and expiring tables.
 if ffid in self._ignored:
 return (None, None, False)
 elif rfid in self._ignored:
 return (None, None, False)
 elif ffid in self._active:
 (fid, rec) = (ffid, self._active[ffid])
 #logger.debug("found forward flow for "+str(ffid))
 elif ffid in self._expiring:
 (fid, rec) = (ffid, self._expiring[ffid])
 #logger.debug("found expiring forward flow for "+str(ffid))
 elif rfid in self._active:
 (fid, rec) = (rfid, self._active[rfid])
 #logger.debug("found reverse flow for "+str(rfid))
 elif rfid in self._expiring:
 (fid, rec) = (rfid, self._expiring[rfid])
 #logger.debug("found expiring reverse flow for "+str(rfid))
 else:
 # nowhere to be found. new flow.
 rec = {'first': ip.seconds}
 for fn in self._new_flow_chain:
 if not fn(rec, ip):
 #logger.debug("ignoring "+str(ffid))
 self._ignored.add(ffid)
 self._ct_ignored += 1
 return (None, None, False)

 # wasn't vetoed. add to active table.
 fid = ffid
 self._active[ffid] = rec
 #logger.debug("new flow for "+str(ffid))
 self._ct_flow += 1

 # update time and return record
 rec['last'] = ip.seconds
 return (fid, rec, bool(fid == rfid))

 def _flow_complete(self, fid, delay=5):
 """
 Mark a given flow ID as complete
 """
 logger = logging.getLogger("observer")
 # move flow to expiring table
 # logging.debug("Moving flow " + str(fid) + " to expiring queue")
 try:
 self._expiring[fid] = self._active[fid]
 except KeyError:
 #logger.debug("Tried to expire an already expired flow")
 pass
 else:
 del self._active[fid]
 # set up a timer to fire to emit the flow after timeout
 self._set_timer(delay, fid)

 def _emit_flow(self, rec):
 self._emitted.append(rec)

 def _next_flow(self):
 while len(self._emitted) == 0:
 if not self._next_packet():
 return None

 return self._emitted.popleft()

 def _tick(self, pt):
 # Advance packet clock
 self._pt = pt

 # fire all timers whose time has come
 while len(self._tq) > 0 and pt > min(self._tq, key=lambda x: x.time).time:
 try:
 heapq.heappop(self._tq).fn()
 except:
 type, value, tb = sys.exc_info()
 traceback.print_exc()
 pdb.post_mortem(tb)

 def _finish_expiry_tfn(self, fid):
 """
 On expiry timer, emit the flow
 and delete it from the expiring queue
 """
 def tfn():
 if fid in self._expiring:
 self._emit_flow(self._expiring[fid])
 del self._expiring[fid]
 return tfn

[docs] def purge_idle(self, timeout=30):
 # TODO test this, it's probably pretty slow.
 for fid in self._active:
 if self._pt - self._active['fid']['last'] > timeout:
 self._flow_complete(fid)

[docs] def flush(self):
 for fid in self._expiring:
 self._emit_flow(self._expiring[fid])
 self._expiring.clear()

 for fid in self._active:
 self._emit_flow(self._active[fid])
 self._active.clear()

 self._ignored.clear()

[docs] def run_flow_enqueuer(self, flowqueue, irqueue=None):
 if irqueue:
 self._irq = irqueue
 self._irq_fired = None

 # Run main loop until last packet seen
 # then flush active flows and run again
 for i in range(2):
 while True:
 f = self._next_flow()
 if f:
 flowqueue.put(f)
 else:
 self.flush()
 break

 # log observer info on shutdown
 logging.getLogger("observer").info(
 ("processed %u packets "+
 "(%u dropped, %u short, %u non-ip) "+
 "into %u flows (%u ignored)") % (
 self._ct_pkt, self._trace.pkt_drops(),
 self._ct_shortkey, self._ct_nonip,
 self._ct_flow, self._ct_ignored))

 flowqueue.put(SHUTDOWN_SENTINEL)

def extract_ports(ip):
 if ip.udp:
 return (ip.udp.src_port, ip.udp.dst_port)
 elif ip.tcp:
 return (ip.tcp.src_port, ip.tcp.dst_port)
 else:
 return (None, None)

def basic_flow(rec, ip):
 """
 New flow function that sets up basic flow information
 """

 # Extract addresses and ports
 (rec['sip'], rec['dip'], rec['proto']) = (str(ip.src_prefix), str(ip.dst_prefix), ip.proto)
 (rec['sp'], rec['dp']) = extract_ports(ip)

 # Initialize counters
 rec['pkt_fwd'] = 0
 rec['pkt_rev'] = 0
 rec['oct_fwd'] = 0
 rec['oct_rev'] = 0

 # we want to keep this flow
 return True

def basic_count(rec, ip, rev):
 """
 Packet function that counts packets and octets per flow
 """

 if rev:
 rec["pkt_rev"] += 1
 rec["oct_rev"] += ip.size
 else:
 rec["pkt_fwd"] += 1
 rec["oct_fwd"] += ip.size

 return True

def simple_observer(lturi):
 return Observer(lturi,
 new_flow_chain=[basic_flow],
 ip4_chain=[basic_count],
 ip6_chain=[basic_count])

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_modules/templatespider.html

 Navigation

 		
 index

 		PATHspider 0.9.0 documentation »

 		Module code »

 Source code for templatespider

import sys
import collections

from twisted.plugin import IPlugin
from zope.interface import implementer

from pathspider.base import Spider
from pathspider.base import ISpider
from pathspider.base import NO_FLOW

from pathspider.observer import Observer
from pathspider.observer import basic_flow
from pathspider.observer import basic_count

Connection = collections.namedtuple("Connection", ["host", "state"])
SpiderRecord = collections.namedtuple("SpiderRecord", ["ip", "rport", "port",
 "host", "config",
 "connstate"])

@implementer(ISpider, IPlugin)
[docs]class TemplateSpider(Spider):
 """
 A template PATHspider plugin.
 """

 def config_zero(self):
 print("Configuration zero")

 def config_one(self):
 print("Configuration one")

 def connect(self, job, pcs, config):
 sock = "Hello"
 return Connection(sock, 1)

 def post_connect(self, job, conn, pcs, config):
 rec = SpiderRecord(job[0], job[1], job[2], config, True)
 return rec

 def create_observer(self):
 try:
 return Observer(self.libtrace_uri,
 new_flow_chain=[basic_flow],
 ip4_chain=[basic_count],
 ip6_chain=[basic_count])
 except:
 print("Observer would not start")
 sys.exit(-1)

 def merge(self, flow, res):
 if flow == NO_FLOW:
 flow = {"dip": res.ip,
 "sp": res.port,
 "dp": res.rport,
 "observed": False}
 else:
 flow['observed'] = True

 self.outqueue.put(flow)

templatespider = TemplateSpider()

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_modules/ecnspider3.html

 Navigation

 		
 index

 		PATHspider 0.9.0 documentation »

 		Module code »

 Source code for ecnspider3

import sys
import logging
import subprocess
import traceback

import socket
import collections

from twisted.plugin import IPlugin
from zope.interface import implementer

from pathspider.base import Spider
from pathspider.base import ISpider
from pathspider.base import NO_FLOW

from pathspider.observer import Observer
from pathspider.observer import basic_flow
from pathspider.observer import basic_count

Connection = collections.namedtuple("Connection", ["client", "port", "state"])
SpiderRecord = collections.namedtuple("SpiderRecord", ["ip", "rport", "port",
 "host", "ecnstate",
 "connstate"])

CONN_OK = 0
CONN_FAILED = 1
CONN_TIMEOUT = 2

USER_AGENT = "pathspider"

Chain functions

def tcpcompleted(rec, tcp, rev): # pylint: disable=W0612,W0613
 return not tcp.fin_flag

def ecnsetup(rec, ip):
 rec['ecn_zero'] = False
 rec['ecn_one'] = False
 rec['ce'] = False
 return True

def ecnflags(rec, tcp, rev):
 SYN = 0x02
 CWR = 0x40
 ECE = 0x80

 flags = tcp.flags

 if flags & SYN:
 if rev == 0:
 rec['fwd_syn_flags'] = flags
 if rev == 1:
 rec['rev_syn_flags'] = flags

 return True

def ecncode(rec, ip, rev):
 EZ = 0x01
 EO = 0x02
 CE = 0x03

 if (ip.traffic_class & EZ == EZ):
 rec['ecn_zero'] = True
 if (ip.traffic_class & EO == EO):
 rec['ecn_one'] = True
 if (ip.traffic_class & CE == CE):
 rec['ce'] = True

 return True

ECNSpider main class

@implementer(ISpider, IPlugin)
class ECNSpider(Spider):

 def activate(self, worker_count, libtrace_uri):
 super().activate(worker_count=worker_count,
 libtrace_uri=libtrace_uri)
 self.tos = None # set by configurator
 self.conn_timeout = 10

[docs] def config_zero(self):
 """
 Disables ECN negotiation via sysctl.
 """

 logger = logging.getLogger('ecnspider3')
 subprocess.check_call(['/sbin/sysctl', '-w', 'net.ipv4.tcp_ecn=2'],
 stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
 logger.debug("Configurator disabled ECN")

[docs] def config_one(self):
 """
 Enables ECN negotiation via sysctl.
 """

 logger = logging.getLogger('ecnspider3')
 subprocess.check_call(['/sbin/sysctl', '-w', 'net.ipv4.tcp_ecn=1'],
 stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
 logger.debug("Configurator enabled ECN")

[docs] def connect(self, job, pcs, config):
 """
 Performs a TCP connection.
 """

 if ":" in job[0]:
 sock = socket.socket(socket.AF_INET6)
 else:
 sock = socket.socket(socket.AF_INET)

 try:
 sock.settimeout(self.conn_timeout)
 sock.connect((job[0], job[1]))

 return Connection(sock, sock.getsockname()[1], CONN_OK)
 except TimeoutError:
 return Connection(sock, sock.getsockname()[1], CONN_TIMEOUT)
 except OSError:
 return Connection(sock, sock.getsockname()[1], CONN_FAILED)

[docs] def post_connect(self, job, conn, pcs, config):
 """
 Close the socket gracefully.
 """

 if conn.state == CONN_OK:
 rec = SpiderRecord(job[0], job[1], conn.port, job[2], config, True)
 else:
 rec = SpiderRecord(job[0], job[1], conn.port, job[2], config, False)

 try:
 conn.client.shutdown(socket.SHUT_RDWR)
 except:
 pass

 try:
 conn.client.close()
 except:
 pass

 return rec

 def create_observer(self):
 """
 Creates an observer with ECN-related chain functions.
 """

 logger = logging.getLogger('ecnspider3')
 logger.info("Creating observer")
 try:
 return Observer(self.libtrace_uri,
 new_flow_chain=[basic_flow, ecnsetup],
 ip4_chain=[basic_count, ecncode],
 ip6_chain=[basic_count, ecncode],
 tcp_chain=[ecnflags, tcpcompleted])
 except:
 logger.error("Observer not cooperating, abandon ship")
 traceback.print_exc()
 sys.exit(-1)

[docs] def merge(self, flow, res):
 """
 Merge flow records.

 Includes the configuration and connection success or failure of the
 socket connection with the flow record.
 """

 logger = logging.getLogger('ecnspider3')
 if flow == NO_FLOW:
 flow = {"dip": res.ip,
 "sp": res.port,
 "dp": res.rport,
 "connstate": res.connstate,
 "ecnstate": res.ecnstate,
 "observed": False }
 else:
 flow['connstate'] = res.connstate
 flow['ecnstate'] = res.ecnstate
 flow['observed'] = True

 logger.debug("Result: " + str(flow))
 self.outqueue.put(flow)

ecnspider = ECNSpider()

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

_modules/pathspider/base.html

 Navigation

 		
 index

 		PATHspider 0.9.0 documentation »

 		Module code »

 Source code for pathspider.base

"""
Basic framework for Pathspider: coordinate active measurements on large target
lists with both system-level network stack state (sysctls, iptables rules, etc)
as well as information derived from flow-level passive observation of traffic at
the sender.

.. moduleauthor:: Brian Trammell <brian@trammell.ch>

Derived and generalized from ECN Spider
(c) 2014 Damiano Boppart <hat.guy.repo@gmail.com>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

"""

import sys
import time
import logging
import socket
import collections
import threading
import multiprocessing as mp
import queue

from ipaddress import ip_address
from zope.interface import Interface

###
Utility Classes
###

class SemaphoreN(threading.BoundedSemaphore):
 """
 An extension to the standard library's BoundedSemaphore that provides
 functions to handle n tokens at once.
 """
 def __init__(self, value):
 self._value = value
 super().__init__(self._value)
 self.empty()

 def __str__(self):
 return 'SemaphoreN with a maximum value of {}.'.format(self._value)

 def acquire_n(self, value=1, blocking=True, timeout=None):
 """
 Acquire ``value`` number of tokens at once.

 The parameters ``blocking`` and ``timeout`` have the same semantics as
 :class:`BoundedSemaphore`.

 :returns: The same value as the last call to `BoundedSemaphore`'s
 :meth:`acquire` if :meth:`acquire` were called ``value`` times instead
 of the call to this method.
 """
 ret = None
 for _ in range(value):
 ret = self.acquire(blocking=blocking, timeout=timeout)
 return ret

 def release_n(self, value=1):
 """
 Release ``value`` number of tokens at once.

 :returns: The same value as the last call to `BoundedSemaphore`'s
 :meth:`release` if :meth:`release` were called ``value`` times instead
 of the call to this method.
 """
 ret = None
 for _ in range(value):
 ret = self.release()
 return ret

 def empty(self):
 """
 Acquire all tokens of the semaphore.
 """
 while self.acquire(blocking=False):
 pass

QUEUE_SIZE = 1000
QUEUE_SLEEP = 0.5

SHUTDOWN_SENTINEL = None
NO_FLOW = None

[docs]class Spider:
 """
 A spider consists of a configurator (which alternates between two system
 configurations), a large number of workers (for performing some network
 action for each configuration), an Observer which derives information from
 passively observed traffic, and a thread that merges results from the
 workers with flow records from the collector.

 """

 def __init__(self):
 """
 Bare minimum initalisation for a pathspider plugin.

 .. warning::
 This function should not be overloaded by any plugin. Its purpose here
 is only to set the "activated" flag to false, to prevent the plugin
 functions being used before it has been activated.
 """

 self.activated = False

[docs] def activate(self, worker_count, libtrace_uri):
 """
 The activate function performs initialisation of a pathspider plugin.

 :param worker_count: The number of workers to use.
 :type worker_count: int
 :param libtrace_uri: The URI to pass to the Observer to describe the
 interface on which packets should be captured.
 :type libtrace_uri: str
 :see also: :func:`pathspider.base.ISpider.activate() <ISpider.activate>`

 It is expected that this function will be overloaded by plugins, though
 the plugin should always make a call to the activate() function of the
 abstract Spider class as this initialises all of the base functionality:

 .. code-block:: python

 super().activate(worker_count=worker_count,
 libtrace_uri=libtrace_uri,
 check_interrupt=check_interrupt)

 This can be used to initialise any variables which may be required in
 the object. Do not initialise any variables in the __init__ method, or
 perform any other operations there as all plugins must be instantiated
 in order to be loaded and this will cause unnecessary delays in the
 starting of pathspider.
 """

 self.activated = True
 self.running = False
 self.stopping = False
 self.terminating = False

 self.worker_count = worker_count
 self.active_worker_count = 0
 self.active_worker_lock = threading.Lock()

 self.libtrace_uri = libtrace_uri
self.check_interrupt = check_interrupt

 self.sem_config_zero = SemaphoreN(worker_count)
 self.sem_config_zero.empty()
 self.sem_config_zero_rdy = SemaphoreN(worker_count)
 self.sem_config_zero_rdy.empty()
 self.sem_config_one = SemaphoreN(worker_count)
 self.sem_config_one.empty()
 self.sem_config_one_rdy = SemaphoreN(worker_count)
 self.sem_config_one_rdy.empty()

 self.jobqueue = queue.Queue(QUEUE_SIZE)
 self.resqueue = queue.Queue(QUEUE_SIZE)

 self.flowqueue = mp.Queue(QUEUE_SIZE)
 self.observer_shutdown_queue = mp.Queue(QUEUE_SIZE)

 self.restab = {}
 self.flowtab = {}

 self.outqueue = queue.Queue(QUEUE_SIZE)

 self.observer = None

 self.worker_threads = []
 self.configurator_thread = None
self.interrupter_thread = None
 self.merger_thread = None

 self.observer_process = None

self._worker_state = ["not_started"] * self.worker_count

 self.lock = threading.Lock()
 self.exception = None

[docs] def configurator(self):
 """
 Thread which synchronizes on a set of semaphores and alternates
 between two system states.
 """
 logger = logging.getLogger('pathspider')

 while self.running:
 logger.debug("setting config zero")
 self.config_zero()
 logger.debug("config zero active")
 self.sem_config_zero.release_n(self.worker_count)
 self.sem_config_one_rdy.acquire_n(self.worker_count)
 logger.debug("setting config one")
 self.config_one()
 logger.debug("config one active")
 self.sem_config_one.release_n(self.worker_count)
 self.sem_config_zero_rdy.acquire_n(self.worker_count)

 # In case the master exits the run loop before all workers have,
 # these tokens will allow all workers to run through again,
 # until the next check at the start of the loop
 self.sem_config_zero.release_n(self.worker_count)
 self.sem_config_one.release_n(self.worker_count)

[docs] def config_zero(self):
 """
 Changes the global state or system configuration for the
 baseline measurements.
 """

 raise NotImplementedError("Cannot instantiate an abstract Pathspider")

[docs] def config_one(self):
 """
 Changes the global state or system configuration for the
 experimental measurements.
 """

 raise NotImplementedError("Cannot instantiate an abstract Pathspider")

 # def interrupter(self):
 # if self.check_interrupt is None:
 # return

 # logger = logging.getLogger('pathspider')
 # while self.running:
 # if self.check_interrupt():
 # logger.warning("spider interrupted")
 # logger.warning("trying to abort %d jobs", self.jobqueue.qsize())
 # while not self.jobqueue.empty():
 # self.jobqueue.get()
 # self.jobqueue.task_done()
 # self.stop()
 # break
 # time.sleep(5)

[docs] def worker(self, worker_number):
 """
 This function provides the logic for the worker threads.

 :param worker_number: The unique number of the worker.
 :type worker_number: int

 The workers operate as continuous loops:

 * Fetch next job from the job queue
 * Perform pre-connection operations
 * Acquire a lock for "config_zero"
 * Perform the "config_zero" connection
 * Release "config_zero"
 * Acquire a lock for "config_one"
 * Perform the "config_one" connection
 * Release "config_one"
 * Perform post-connection operations for config_zero and pass the
 result to the merger
 * Perform post-connection operations for config_one and pass the
 result to the merger
 * Do it all again

 If the job fetched is the SHUTDOWN_SENTINEL, then the worker will
 terminate as this indicates that all the jobs have now been processed.
 """

 logger = logging.getLogger('pathspider')
 worker_active = True

 while self.running:
 if worker_active:
 try:
 job = self.jobqueue.get_nowait()

 # Break on shutdown sentinel
 if job == SHUTDOWN_SENTINEL:
 self.jobqueue.task_done()
 logger.debug("shutting down worker "+str(worker_number)+" on sentinel")
 #self._worker_state[worker_number] = "shutdown_sentinel"
 worker_active = False
 with self.active_worker_lock:
 self.active_worker_count -= 1
 logger.debug(str(self.active_worker_count)+" workers still active")
 continue

 logger.debug("got a job: "+repr(job))
 except queue.Empty:
 #logger.debug("no job available, sleeping")
 # spin the semaphores
 self.sem_config_zero.acquire()
 #self._worker_state[worker_number] = "sleep_0"
 time.sleep(QUEUE_SLEEP)
 self.sem_config_one_rdy.release()
 self.sem_config_one.acquire()
 #self._worker_state[worker_number] = "sleep_1"
 time.sleep(QUEUE_SLEEP)
 self.sem_config_zero_rdy.release()
 else:
 # Hook for preconnection
 #self._worker_state[worker_number] = "preconn"
 pcs = self.pre_connect(job)

 # Wait for configuration zero
 #self._worker_state[worker_number] = "wait_0"
 self.sem_config_zero.acquire()

 # Connect in configuration zero
 #self._worker_state[worker_number] = "conn_0"
 conn0 = self.connect(job, pcs, 0)

 # Wait for configuration one
 #self._worker_state[worker_number] = "wait_1"
 self.sem_config_one_rdy.release()
 self.sem_config_one.acquire()

 # Connect in configuration one
 #self._worker_state[worker_number] = "conn_1"
 conn1 = self.connect(job, pcs, 1)

 # Signal okay to go to configuration zero
 self.sem_config_zero_rdy.release()

 # Pass results on for merge
 #self._worker_state[worker_number] = "postconn_0"
 self.resqueue.put(self.post_connect(job, conn0, pcs, 0))
 #self._worker_state[worker_number] = "postconn_1"
 self.resqueue.put(self.post_connect(job, conn1, pcs, 1))

 #self._worker_state[worker_number] = "done"
 logger.debug("job complete: "+repr(job))
 self.jobqueue.task_done()
 else: # not worker_active, spin the semaphores
 self.sem_config_zero.acquire()
 #self._worker_state[worker_number] = "shutdown_0"
 time.sleep(QUEUE_SLEEP)
 with self.active_worker_lock:
 if self.active_worker_count <= 0:
 #self._worker_state[worker_number] = "shutdown_complete"
 break
 self.sem_config_one_rdy.release()
 self.sem_config_one.acquire()
 #self._worker_state[worker_number] = "shutdown_1"
 time.sleep(QUEUE_SLEEP)
 self.sem_config_zero_rdy.release()

[docs] def pre_connect(self, job):
 """
 Performs pre-connection operations.

 :param job: The job record.
 :type job: dict
 :returns: dict -- Result of the pre-connection operation(s).

 The pre_connect function can be used to perform any operations that
 must be performed before each connection. It will be run only once
 per job, with the same result passed to both the A and B connect
 calls. This function is not synchronised with the configurator.

 Plugins to PATHspider can optionally implement this function. If this
 function is not overloaded, it will be a noop.
 """

 pass

[docs] def connect(self, job, pcs, config):
 """
 Performs the connection.

 :param job: The job record.
 :type job: dict
 :param pcs: The result of the pre-connection operations(s).
 :type pcs: dict
 :param config: The current state of the configurator (0 or 1).
 :type config: int
 :returns: object -- Any result of the connect operation to be passed
 to :func:`pathspider.base.Spider.post_connect`.

 The connect function is used to perform the connection operation and
 is run for both the A and B test. This method is not implemented in
 the abstract :class:`pathspider.base.Spider` class and must be
 implemented by any plugin.

 Sockets created during this operation can be returned by the function
 for use in the post-connection phase, to minimise the time that the
 configurator is blocked from moving to the next configuration.
 """

 raise NotImplementedError("Cannot instantiate an abstract Pathspider")

[docs] def post_connect(self, job, conn, pcs, config):
 """
 Performs post-connection operations.

 :param job: The job record.
 :type job: dict
 :param conn: The result of the connection operation(s).
 :type conn: object
 :param pcs: The result of the pre-connection operations(s).
 :type pcs: dict
 :param config: The state of the configurator during
 :func:`pathspider.base.Spider.connect`.
 :type config: int
 :returns: dict -- Result of the pre-connection operation(s).

 The post_connect function can be used to perform any operations that
 must be performed after each connection. It will be run for both the
 A and the B configuration, and is not synchronised with the
 configurator.

 Plugins to PATHspider can optionally implement this function. If this
 function is not overloaded, it will be a noop.

 Any sockets or other file handles that were opened during
 :func:`pathspider.base.Spider.connect` should be closed in this
 function if they have not been already.
 """

 raise NotImplementedError("Cannot instantiate an abstract Pathspider")

[docs] def create_observer(self):
 """
 Create a flow observer.

 This function is called by the base Spider logic to get an instance
 of :class:`pathspider.observer.Observer` configured with the function
 chains that are requried by the plugin.

 This method is not implemented in the abstract
 :class:`pathspider.base.Spider` class and must be implemented by any
 plugin.

 For more information on how to use the flow observer, see
 :ref:`Observer <observer>`.
 """

 raise NotImplementedError("Cannot instantiate an abstract Pathspider")

[docs] def merger(self):
 """
 Thread to merge results from the workers and the observer.
 """

 logger = logging.getLogger('pathspider')
 merging_flows = True
 merging_results = True

 while self.running and merging_results:
 if self.flowqueue.qsize() >= self.resqueue.qsize():
 try:
 flow = self.flowqueue.get_nowait()
 except queue.Empty:
 time.sleep(QUEUE_SLEEP)
 else:
 if flow == SHUTDOWN_SENTINEL:
 logger.debug("stopping flow merging on sentinel")
 merging_flows = False
 continue

 flowkey = (flow['dip'], flow['sp'])
 logger.debug("got a flow (" + str(flow['sip']) + ", " +
 str(flow['sp']) + ")")

 if flowkey in self.restab:
 logger.debug("merging flow")
 self.merge(flow, self.restab[flowkey])
 del self.restab[flowkey]
 elif flowkey in self.flowtab:
 logger.debug("won't merge duplicate flow")
 else:
 # FIXME: How to keep flowtab from
 # exploding with unrelated flows?
 # We need a timer queue for flow expiry.
 # See Issue #30
 self.flowtab[flowkey] = flow

 else:
 try:
 res = self.resqueue.get_nowait()
 except queue.Empty:
 time.sleep(QUEUE_SLEEP)
 logger.debug("result queue is empty")
 else:
 if res == SHUTDOWN_SENTINEL:
 merging_results = False
 logger.debug("stopping result merging on sentinel")
 continue

 reskey = (res.ip, res.port)
 logger.debug("got a result (" + str(res.ip) + ", " +
 str(res.port) + ")")

 if reskey in self.flowtab:
 logger.debug("merging result")
 self.merge(self.flowtab[reskey], res)
 del self.flowtab[reskey]
 elif reskey in self.restab:
 logger.debug("won't merge duplicate result")
 else:
 self.restab[reskey] = res

 self.resqueue.task_done()

 # Both shutdown markers received.
 # Call merge on all remaining entries in the results table
 # with null flows.
 # Commented out for now; see https://github.com/mami-project/pathspider/issues/29
 for res_item in self.restab.items():
 res = res_item[1]
 self.merge(NO_FLOW, res)

[docs] def merge(self, flow, res):
 """
 Merge a job record with a flow record.

 :param flow: The flow record.
 :type flow: dict
 :param res: The job record.
 :type res: dict
 :return: tuple -- Final record for job.

 In order to create a final record for reporting on a job, the final job
 record must be merged with the flow record. This function should
 be implemented by any plugin to provide the logic for this merge as
 the keys used in these records cannot be known by PATHspider in advance.

 This method is not implemented in the abstract
 :class:`pathspider.base.Spider` class and must be implemented by any
 plugin.
 """

 raise NotImplementedError("Cannot instantiate an abstract Pathspider")

 def exception_wrapper(self, target, *args, **kwargs):
 try:
 target(*args, **kwargs)
 except:
 #FIXME: What exceptions do we expect?
 logger = logging.getLogger('pathspider')
 logger.exception("exception occurred. terminating.")
 if self.exception is None:
 self.exception = sys.exc_info()[1]

 self.terminate()

[docs] def start(self):
 """
 This function starts a PATHspider plugin.

 In order to run, the plugin must have first been activated by calling
 its :func:`activate` method. This function causes the following to
 happen:

 * Set the running flag
 * Create an :class:`pathspider.observer.Observer` and start its
 process
 * Start the merger thread
 * Start the configurator thread
 * Start the worker threads

 The number of worker threads to start was given when activating the
 plugin.
 """

 logger = logging.getLogger('pathspider')
 if self.activated == False:
 logger.exception("tried to run plugin without activating first")
 sys.exit(1)

 logger.info("starting pathspider")

 with self.lock:
 # set the running flag
 self.running = True

 # create an observer and start its process
 self.observer = self.create_observer()
 self.observer_process = mp.Process(
 args=(self.observer.run_flow_enqueuer,
 self.flowqueue,
 self.observer_shutdown_queue),
 target=self.exception_wrapper,
 name='observer',
 daemon=True)
 self.observer_process.start()
 logger.debug("observer forked")

 # now start up ecnspider, backwards
 self.merger_thread = threading.Thread(
 args=(self.merger,),
 target=self.exception_wrapper,
 name="merger",
 daemon=True)
 self.merger_thread.start()
 logger.debug("merger up")

 self.configurator_thread = threading.Thread(
 args=(self.configurator,),
 target=self.exception_wrapper,
 name="configurator",
 daemon=True)
 self.configurator_thread.start()
 logger.debug("configurator up")

 # threading.Thread(
 # target = self.worker_status_reporter,
 # name = "status_reporter",
 # daemon = True).start()
 # logger.debug("status reporter up")

 self.worker_threads = []
 with self.active_worker_lock:
 self.active_worker_count = self.worker_count
 for i in range(self.worker_count):
 worker_thread = threading.Thread(
 args=(self.worker, i),
 target=self.exception_wrapper,
 name='worker_{}'.format(i),
 daemon=True)
 self.worker_threads.append(worker_thread)
 worker_thread.start()
 logger.debug("workers up")

 # if self.check_interrupt is not None:
 # self.interrupter_thread = threading.Thread(
 # args=(self.interrupter,),
 # target=self.exception_wrapper,
 # name="interrupter",
 # daemon=True)
 # self.interrupter_thread.start()
 # logger.debug("interrupter up")

[docs] def shutdown(self):
 """
 Shut down PathSpider in an orderly fashion,
 ensuring that all queued jobs complete,
 and all available results are merged.

 """
 logger = logging.getLogger('pathspider')

 logger.info("shutting down pathspider")

 with self.lock:
 # Set stopping flag
 self.stopping = True

 # Place two shutdown sentinels per worker
 # in the job queue FIXME HACK
 for i in range(self.worker_count):
 self.jobqueue.put(SHUTDOWN_SENTINEL)

 # Wait for worker threads to shut down
 for worker in self.worker_threads:
 if threading.current_thread() != worker:
 logger.debug("joining worker: " + repr(worker))
 worker.join()
 logger.debug("all workers joined")

 # Tell observer to shut down
 self.observer_shutdown_queue.put(True)
 self.observer_process.join()
 logger.debug("observer shutdown")

 # Tell merger to shut down
 self.resqueue.put(SHUTDOWN_SENTINEL)
 self.merger_thread.join()
 logger.debug("merger shutdown")

 # Wait for merged results to be written
 self.outqueue.join()
 logger.debug("all results retrieved")

 # Propagate shutdown sentinel and tell threads to stop
 self.outqueue.put(SHUTDOWN_SENTINEL)

 # Tell threads we've stopped
 self.running = False

 # Join configurator
 # if threading.current_thread() != self.configurator_thread:
 # self.configurator_thread.join()

 self.stopping = False

 logger.info("shutdown complete")

[docs] def terminate(self):
 """
 Shut down PathSpider as quickly as possible,
 without any regard to completeness of results.

 """
 logger = logging.getLogger('pathspider')
 logger.info("terminating pathspider")

 # tell threads to stop
 self.stopping = True
 self.running = False

 # terminate observer
 self.observer_shutdown_queue.put(True)

 # drain queues
 try:
 while True:
 self.jobqueue.task_done()
 except ValueError:
 pass

 try:
 while True:
 self.resqueue.task_done()
 except ValueError:
 pass

 try:
 while True:
 self.flowqueue.get_nowait()
 except queue.Empty:
 pass

 # Join remaining threads
 for worker in self.worker_threads:
 if threading.current_thread() != worker:
 logger.debug("joining worker: " + repr(worker))
 worker.join()
 logger.debug("all workers joined")

 if threading.current_thread() != self.configurator_thread:
 self.configurator_thread.join()
 logger.debug("configurator joined")

 if threading.current_thread() != self.merger_thread:
 self.merger_thread.join()
 logger.debug("merger joined")

 self.observer_process.join()
 logger.debug("observer joined")

 self.outqueue.put(SHUTDOWN_SENTINEL)
 logger.info("termination complete")

[docs] def add_job(self, job):
 """
 Adds a job to the job queue.

 If PATHspider is currently stopping, the job will not be added to the
 queue.
 """

 if self.stopping:
 return

 self.jobqueue.put(job)

def local_address(ipv=4, target="path-ams.corvid.ch", port=53):
if ipv == 4:
addrfamily = socket.AF_INET
elif ipv == 6:
addrfamily = socket.AF_INET6
else:
assert False

try:
sock = socket.socket(addrfamily, socket.SOCK_DGRAM)
sock.connect((target, port))
return ip_address(sock.getsockname()[0])
except:
#FIXME: What exceptions do we expect?
return None

[docs]class ISpider(Interface): # pylint: disable=E0239
 """
 The ISpider interface defines the expected interface for PATHspider plugins.
 """

 def activate(self, worker_count, libtrace_uri):
 pass

 def configurator(self):
 pass

 def config_zero(self):
 pass

 def config_one(self):
 pass

 def worker(self, worker_number):
 pass

 def pre_connect(self, job):
 pass

 def connect(self, job, pcs, config):
 pass

 def post_connect(self, job, conn, pcs, config):
 pass

 def create_observer(self):
 pass

 def merger(self):
 pass

 def merge(self, flow, res):
 pass

 def exception_wrapper(self, target, *args, **kwargs):
 pass

 def start(self):
 pass

 def shutdown(self):
 pass

 def terminate(self):
 pass

 def add_job(self, job):
 pass

 © Copyright 2016, the PATHspider authors.
 Created using Sphinx 1.3.5.

